Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Formula: C6H11NaO7
Kumar, Abhinash;Jha, Manindra Nath;Singh, Devendra;Pathak, Devashish;Rajawat, Mahendra Vikram Singh research published 《 Prospecting catabolic diversity of microbial strains for developing microbial consortia and their synergistic effect on Lentil (Lensesculenta) growth, yield and iron biofortification》, the research content is summarized as follows. Carbon profiling of heterotrophic microbial inoculants is worthwhile strategy for formulating consortium-based biofertilizers. Consortium-based biofertilizers are better than single strain-based biofertilizers for sustaining agricultural productivity and enhancing micronutrient concentration in grains. Currently, we investigated catabolic diversity among microbes using different carbon sources and certain enzyme activities. A field experiment was also carried to evaluate the synergistic effect of selected lentil Rhizobia and plant growth promoting rhizobacteria strains on lentil growth, yield, nitrogen fixation, and Fe-content in seeds. On the basis of carbon profiling Bacillus sp.RB1 and Pseudomonas sp.RP1 were selected for synergistic study with lentil Rhizobium-Rhizobium leguminosarum subsp. viciae RR1. Co-inoculation of Rhizobium with Bacillus sp.RB1 and Pseudomonas sp.RP1 significantly enhanced the plant height, number of pods per plant, seed yield, number of nodules per plant, nitrogenase activity and Fe biofortification in seed over the single Rhizobium inoculation or dual combination of Rhizobium + RB1 or RP1. The response of single Rhizobium inoculation or co-inoculation of Rhizobium with RB1 and/or RP1 at 50% RDF was almost similar or higher than full dose of recommended N:P:K with respect to lentil yield and Fe biofortification in seed. This deciphered grouping of microbial strains for formulation of microbial consortia-based biofertilizers and revealed the promise of consortium of Rhizobium and plant growth promoting rhizobacteria in improving the biol. yield and enhancing the Fe content of lentil seed.
Formula: C6H11NaO7, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts