Paioti, Paulo H. S.’s team published research in Journal of the American Chemical Society in 2019 | CAS: 78782-17-9

Bis[(pinacolato)boryl]methane(cas: 78782-17-9) belongs to organoboron compounds. Organoboron compounds are versatile intermediates and as such are some of the most important classes of reagents in modern organic chemistry. This stems from their ease of preparation combined with their ability to undergo a broad range of chemical transformations.Computed Properties of C13H26B2O4

Computed Properties of C13H26B2O4In 2019 ,《Catalytic Enantioselective Boryl and Silyl Substitution with Trifluoromethyl Alkenes: Scope, Utility, and Mechanistic Nuances of Cu-F β-Elimination》 was published in Journal of the American Chemical Society. The article was written by Paioti, Paulo H. S.; del Pozo, Juan; Mikus, Malte S.; Lee, Jaehee; Koh, Ming Joo; Romiti, Filippo; Torker, Sebastian; Hoveyda, Amir H.. The article contains the following contents:

Catalytic enantioselective methods are introduced that allow access to a variety of allyl boronates and silanes that contain a difluoroalkene unit; the resulting products may be used for the preparation of organofluorine compounds in high enantiomeric purity. Also, a number of key mechanistic aspects of the transformations were studied and analyzed. Thus, 1st, an NHC-Cu-catalyzed method for boryl substitution with F3C-substituted alkenes is introduced. These processes, unlike the previously reported strategies, are applicable to alkyl as well as aryl substituted substrates, afford allyl boronates bearing a difluoroalkene moiety (up to 98% yield and 95:5 er). Second, the corresponding silyl substitutions, the 1st reported cases of their kind, are presented (up to 94% yield and 97:3 er). Third, exptl. and computational (DFT) studies are described that shed light on key mechanistic aspects of the catalytic processes. Evidence (x-ray structures of Cu-alkyl intermediates and kinetic studies) is put forth illustrating that the initial Cu-boryl and Cu-silyl addition is significantly faster than the ensuing Cu-F elimination, and that the latter step can be facilitated by either a mild Lewis acid (e.g., a Li or Na cation) or a nucleophilic promoter (e.g., an alkoxide). These findings together with DFT studies demonstrate that Cu-F β-elimination probably proceeds with anti-stereochem. Representative cases of ways through which the new mechanistic understanding may be used to rationalize previously disclosed findings, significantly improve a transformation, or develop new diastereo- and enantioselective catalytic methods are provided. For example, an explanation is provided regarding why bisphosphine-Cu complexes do not efficiently promote boryl substitutions with aryl-substituted substrates, but the corresponding silyl substitutions are facile, and how the size of a ligand can impact regioselectivity and efficiency. In the experiment, the researchers used many compounds, for example, Bis[(pinacolato)boryl]methane(cas: 78782-17-9Computed Properties of C13H26B2O4)

Bis[(pinacolato)boryl]methane(cas: 78782-17-9) belongs to organoboron compounds. Organoboron compounds are versatile intermediates and as such are some of the most important classes of reagents in modern organic chemistry. This stems from their ease of preparation combined with their ability to undergo a broad range of chemical transformations.Computed Properties of C13H26B2O4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts