Bains, Amreen K.; Singh, Vikramjeet; Adhikari, Debashis published the artcile< Homogeneous Nickel-Catalyzed Sustainable Synthesis of Quinoline and Quinoxaline under Aerobic Conditions>, Related Products of 403-41-8, the main research area is amine alc nickel catalyst dehydrogenative coupling green; quinoline preparation; quinoxaline preparation.
Dehydrogenative coupling-based reactions have emerged as an efficient route toward the synthesis of a plethora of heterocyclic rings. Herein, we report an efficacious, nickel-catalyzed synthesis of two important heterocycles such as quinoline and quinoxaline. The catalyst is molecularly defined, is phosphine-free, and can operate at a mild reaction temperature of 80°C. Both the heterocycles can be easily assembled via double dehydrogenative coupling, starting from 2-aminobenzyl alc./1-phenylethanol and diamine/diol, resp., in a shorter span of reaction time. This environmentally benign synthetic protocol employing an inexpensive catalyst can rival many other transition-metal systems that have been developed for the fabrication of two putative heterocycles. Mechanistically, the dehydrogenation of secondary alc. follows clean pseudo-first-order kinetics and exhibits a sizable kinetic isotope effect. Intriguingly, this catalyst provides an example of storing the trapped hydrogen in the ligand backbone, avoiding metal-hydride formation. Easy regeneration of the oxidized form of the catalyst under aerobic/O2 oxidation makes this protocol eco-friendly and easy to handle.
Journal of Organic Chemistry published new progress about Alcohols Role: RCT (Reactant), RACT (Reactant or Reagent). 403-41-8 belongs to class alcohols-buliding-blocks, and the molecular formula is C8H9FO, Related Products of 403-41-8.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts