McCasland, G. E.;Gottwald, L. Kenneth;Furst, Arthur published 《4,5-Dihalo and 3-amino analogs of pyridoxine. New route to 4-deoxypyridoxine》 in 1961. The article was appeared in 《Journal of Organic Chemistry》. They have made some progress in their research.HPLC of Formula: 148-51-6 The article mentions the following:
Dihalo analogs of pyridoxine, expected to show good alkylating activity, were prepared as potential antitumor agents. SOCl2 (15.0 ml.) was added to 2.06 g. powd. dry pyridoxine hydrochloride (I), the mixture refluxed 1 hr., cooled to 0-25° for several days, filtered, and the crystals washed with C6H6, then with 10 ml. Me2CO, m. 140-90°. Recrystallization from absolute EtOH-C6H6 gave 1.6 g. needles. Dissolution in 25 ml. boiling absolute EtOH and treatment with 25 ml. hot C6H6 gave on cooling 0.9 g. 2-methyl-3-hydroxy-4,5-bis(chloromethyl)pyridine hydrochloride (II), m. 175-90° (decomposition), recrystallized from 10 ml. EtOH to yield 0.7 g. product, m.p. unchanged. I (6.2 g.) treated with 43.5 ml. SOCl2 but kept at 25° only 12 hrs. gave after washing with Me2CO 7.1 g. II, m. 185-95° (decomposition). The use of PCl5 in CCl4, or concentrated HCl, failed to yield pure II. I (21.4 g.) and 200 ml. 8.8M HBr was refluxed 15 min., cooled, filtered, and the solid washed with H2O and Me, CO to give 24.2 g. crystalline 2methyl-3-hydroxy-4,5-bis(bromomethyl)pyridine hydrobromide (III), m. 224-8° (decomposition). III (1.88 g.) was stirred with 0.463 g. NaHCO3 in 20 ml. H2O; the mixture turned pink, then red, and after 100 min. stirring was filtered. The solid was washed with H2O and dried to give 0.6 g. brown-red powder, m. above 325°. The pH of the filtrate was 2, indicating displacement of one or both Br atoms from BrCH2. The solid was insoluble at the boiling point in EtOH, H2O, or 6M HCl. I (2.06 g.) boiled with 67.2 g. 7.6M HI gave 1.3 g.2-methyl-3-hydroxy-4,5-bis(iodomethyl)pyridine hydriodide (IV), m. 120-60° (decomposition). III with NaI in Me2CO failed to give IV. 2-Methyl-3-amino-4,5-bis(hydroxymethyl)pyridine monohydrochloride (V), m. 195-7°, with 8.8M HBr gave 34% 2 methyl-3-amino4,5-bis(bromomethyl)pyridine hydrobromide, m. 220° (decomposition). When 1.0 g. V was boiled with 6.5 ml. 7.6M HI, iodine was liberated and one of the HOCH2 groups was reduced to Me to give 0.59 g. black crystalline mass, which was crystallized from absolute EtOH to yield light yellow 2,4-dimethyl-3-amino-5-(hydroxymethyl)pyridine hydriodide (VI), m. 190-6°, VI (50 mg.) was heated 5 min. with 43 mg. AgCl in 1.0 ml. H2O, the mixturefiltered to remove AgI, the filtrate acidified with 0.2 ml. 12M HCl, the acid solution treated with 23 mg. NaNO2 in 1.0 ml. H2O, and the mixture heated until N effervescence ceased (10-15 min.). The solution was vacuum-distilled to dryness, 0.5 ml. 12M HCl added to the residue, the distillation to dryness repeated, the residue extracted with 2.0 ml. absolute EtOH, cooled, and filtered. The filtrate was treated with Et2O and the separated crystals collected and dried to yield 10 mg. 4-deoxypyridoxine hydrochloride, m. 255° (decomposition). V (1.0 g.), 0.8 g. fused NaOAc, and 20 ml. Ac2O was boiled 20 min., the solvent removed by vacuum distillation, the residue extracted with 15 ml. CHCl3, the CHCl3 extract treated with C, and evaporated to give a brown oil, which was stirred with 2.0 ml. Et2O to yield 0.4 g. solid 2-methyl-3-acetamido-4,5-bis(acetoxymethyl)pyridine (VII), m. 103-1° (C6H6). VII (0.42 g.) in 12 ml. 0.5M NaOH was kept 2 hrs. at 20°, the clear solution adjusted to pH 6-7 by addition of HOAc, the solvent evaporated in vacuo, the residue extracted (Soxhlet) 24 hrs. with Me2CO, and the extract cooled to give 0.1 g. crystalline 2-methyl-3-acetamido-4,5-bis(hydroxymethyl)pyridine, m. 185-6°. And 5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride (cas: 148-51-6) was used in the research process.
5-(hydroxymethyl)-2,4-dimethylpyridin-3-ol hydrochloride(cas:148-51-6 HPLC of Formula: 148-51-6) is a strong antagonist of vitamin B6. Deoxypyridoxine hydrochloride has been used as an analytical reference standard for the quantification of the analyte in food samples using high performance liquid chromatography.
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts