Gurrentz, Joseph M. team published research on Journal of the American Chemical Society in 2020 | 72824-04-5

Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Gurrentz, Joseph M.;Rose, Michael J. research published 《 Non-Catalytic Benefits of Ni(II) Binding to an Si(111)-PNP Construct for Photoelectrochemical Hydrogen Evolution Reaction: Metal Ion Induced Flat Band Potential Modulation》, the research content is summarized as follows. We report here the remarkable and non-catalytic beneficial effects of a Ni(II) ion binding to a Si|PNP type surface as a result of significant thermodn. band bending induced by ligand attachment and Ni(II) binding. We unambiguously deconvolute the thermodn. flat band potentials (VFB) from the kinetic onset potentials (Von) by synthesizing a specialized bis-PNP macrochelate that enables one-step Ni(II) binding to a p-Si(111) substrate. XPS anal. and rigorous control experiments confirm covalent attachment of the designed ligand and its resulting Ni(II) complex. Illuminated J-V measurements under catalytic conditions show that the Si|BisPNP-Ni substrate exhibits the most pos. onset potential for the hydrogen evolution reaction (HER) (-0.55 V vs Fc/Fc+) compared to other substrates herein. Thermodn. flat band potential measurements in the dark reveal that Si|BisPNP-Ni also exhibits the most pos. VFB value (-0.02 V vs Fc/Fc+) by a wide margin. Electrochem. impedance spectroscopy data generated under illuminated, catalytic conditions demonstrate a surprising lack of correlation evident between Von and equivalent circuit element parameters commonly associated with HER. Overall, the resulting paradigm comprises a system wherein the extent of band bending induced by metal ion binding is the primary driver of photoelectrochem. (PEC)-HER benefits, while the kinetic (catalytic) effects of the PNP-Ni(II) are minimal. This suggests that dipole and band-edge engineering must be a primary design consideration (not secondary to catalyst) in semiconductor|catalyst hybrids for PEC-HER.

Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts