Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 72824-04-5
Deng, Kuirong;Guan, Tianyu;Liang, Fuhui;Zheng, Xiaoqiong;Zeng, Qingguang;Liu, Zheng;Wang, Guangxia;Qiu, Zhenping;Zhang, Yangfan;Xiao, Min;Meng, Yuezhong;Wei, Lai research published 《 Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries》, the research content is summarized as follows. Solid-state lithium metal batteries (LMBs) assembled with polymer electrolytes (PEs) and lithium metal anodes are promising batteries owing to their enhanced safety and ultrahigh theor. energy densities. Nevertheless, polymer electrolytes (PEs) suffer from low ionic conductivities, low lithium-ion transference numbers (LITNs) and high flammability. To address these issues, a novel nonflammable single-ion conducting polymer electrolyte (AEP) with ultrahigh ionic conductivity, unity LITN, excellent flame retardance and high flexibility has been developed. Allylboronic acid pinacol ester (AAPE) is incorporated into the 3D crosslinking network of AEP to act as the anion acceptor that traps the anions, improving the LITN to 0.79. AEP possesses an ultrahigh ionic conductivity of 2.52 mS cm-1 at 25°C. AEP cannot be ignited by flame. AEP can construct robust LiF-rich SEIs on lithium metal anodes and effectively suppress dendrite growth. LiFePO4 cells assembled with AEP demonstrate excellent rate capacity (specific capacity of 112.4 mA h g-1 at 5C rate) and long-term cycling stability (93.2% capacity retention after 500 cycles). This work provides a promising approach to prepare new PEs for high-safety, high-stability and high-energy LMBs.
72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts