In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Related Products of 141699-55-0
Cui, J. Jean;Tran-Dube, Michelle;Shen, Hong;Nambu, Mitchell;Kung, Pei-Pei;Pairish, Mason;Jia, Lei;Meng, Jerry;Funk, Lee;Botrous, Iriny;McTigue, Michele;Grodsky, Neil;Ryan, Kevin;Padrique, Ellen;Alton, Gordon;Timofeevski, Sergei;Yamazaki, Shinji;Li, Qiuhua;Zou, Helen;Christensen, James;Mroczkowski, Barbara;Bender, Steve;Kania, Robert S.;Edwards, Martin P. research published 《 Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK)》, the research content is summarized as follows. Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncol. targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with a better ligand efficiency (LE). Further optimization of the lead series generated the clin. candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.
Related Products of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.
Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts