Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Related Products of 533-73-3
An, Tingting;Chen, Mengxue;Zu, Zhongqi;Chen, Qi;Lu, Hengqian;Yue, Pengxiang;Gao, Xueling research published 《 Untargeted and targeted metabolomics reveal changes in the chemical constituents of instant dark tea during liquid-state fermentation by Eurotium cristatum》, the research content is summarized as follows. Instant green tea powder was used as raw material to prepare an instant dark tea via liquid-state fermentation by Eurotium cristatum. To understand how the chem. constituents present in fermented green tea develop during fermentation, samples were collected on different days during fermentation for qual. analyses by ultra-performance liquid chromatog.-Q Exactive Orbitrap/Mass spectrometry. Untargeted metabolomics analyses revealed that the levels of original secondary metabolites in the instant green tea changed significantly from day 3 to day 5 during fermentation Targeted metabolomics indicated that the levels of galloylated catechins (GCs) and free amino acids (FAAs) significantly decreased, but the nongalloylated catechins (NGCs), alkaloids, thearubigins and theabrownins increased dramatically after fermentation The changes in the contents of catechins, gallic acid and free amino acids in the instant dark tea samples were pos. related to the DPPH radical scavenging activities in vitro, and the phenolic acids and FAAs were pos. related to the inhibitory effects towards α-glucosidase. These results showed that fermentation by Eurotium cristatum is critical to the formation of certain qualities of instant dark tea.
Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts