The influence of catalyst in reaction 12080-32-9

In some applications, this compound(12080-32-9)HPLC of Formula: 12080-32-9 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

HPLC of Formula: 12080-32-9. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about [n]-Cyclo-9,9-dibutyl-2,7-fluorene (n=4, 5): Nanoring Size Influence in Carbon-Bridged Cyclo-para-phenylenes. Author is Sicard, Lambert; Lucas, Fabien; Jeannin, Olivier; Bouit, Pierre-Antoine; Rault-Berthelot, Joelle; Quinton, Cassandre; Poriel, Cyril.

For the last ten years, ring-shaped π-conjugated macrocycles possessing radially directed π-orbitals have been subject to intense research. The electronic properties of these rings are deeply dependent on their size. However, most studies involve the flagship family of nanorings: the cyclo-para-phenylenes. We report herein the synthesis and study of the first examples of cyclofluorenes possessing five constituting fluorene units. The structural, optical and electrochem. properties were elucidated by X-ray crystallog., UV-vis absorption and fluorescence spectroscopy, and cyclic voltammetry. By comparison with a shorter analog, we show how the electronic properties of [5]-cyclofluorenes are drastically different from those of [4]-cyclofluorenes, highlighting the key role played by the ring size in the cyclofluorene family.

In some applications, this compound(12080-32-9)HPLC of Formula: 12080-32-9 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Downstream Synthetic Route Of 23002-78-0

In some applications, this compound(23002-78-0)Related Products of 23002-78-0 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 1-(2-Methylthiazol-4-yl)ethanone(SMILESS: CC(C1=CSC(C)=N1)=O,cas:23002-78-0) is researched.COA of Formula: C8H12Cl2Pt. The article 《Heterocycles from amino ketones. XIV. Thiazolyl- and pyrrolylquinolines》 in relation to this compound, is published in Zeitschrift fuer Chemie. Let’s take a look at the latest research on this compound (cas:23002-78-0).

2-(R-Substituted)-4-(R1-substituted)-quinolines (I) [where R = 2-methylthiazol-4-yl (II), 2-phenylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, 2-phenyl-4-methylthiazol-5-yl, 2-amino-4-methylthiazol-5-yl, or 2-pyrryl (III); and R1 = Me or Ph] were prepared by the method of K. et al. (1964). I showed pronounced fluorescence and were tested as fluorescence indicators. Reaction of MeCSNH2 with BrCH2COC(NOH)Me gave 2-methyl-4-acetylthiazole-3-oxime, which was saponified to 2-methyl-4-acetylthiazole.

In some applications, this compound(23002-78-0)Related Products of 23002-78-0 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Research on new synthetic routes about 12080-32-9

In some applications, this compound(12080-32-9)COA of Formula: C8H12Cl2Pt is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: Dichloro(1,5-cyclooctadiene)platinum(II)( cas:12080-32-9 ) is researched.COA of Formula: C8H12Cl2Pt.Norton, Amie E.; Sharma, Malvika; Cashen, Christina; Dourges, Marie-Anne; Toupance, Thierry; Krause, Jeanette A.; Motkuri, Radha Kishan; Connick, William B.; Chatterjee, Sayandev published the article 《pH-mediated colorimetric and luminescent sensing of aqueous nitrate anions by a platinum(II) luminophore@mesoporous silica composite》 about this compound( cas:12080-32-9 ) in ACS Applied Materials & Interfaces. Keywords: colorimetric luminescent sensor aqueous nitrate detection; platinum lumophore mesoporous silica composite; aqueous contaminant detection; environmental sensors; selectivity; sensitivity; water security. Let’s learn more about this compound (cas:12080-32-9).

Increased levels of nitrate (NO3-) in the environment can be detrimental to human health. Herein, we report a robust, cost-effective, and scalable, hybrid material-based colorimetric/luminescent sensor technol. for rapid, selective, sensitive, and interference-free in situ NO3- detection. These hybrid materials are based on a square-planar platinum(II) salt [Pt(tpy)Cl]PF6 (tpy = 2,2′;6′,2′′-terpyridine) supported on mesoporous silica. The platinum salt undergoes a vivid change in color and luminescence upon exposure to aqueous NO3- anions at pH ≤ 0 caused by substitution of the PF6- anions by aqueous NO3-. This change in photophysics of the platinum salt is induced by a rearrangement of its crystal lattice that leads to an extended Pt···Pt···Pt interaction, along with a concomitant change in its electronic structure. Furthermore, incorporating the material into mesoporous silica enhances the surface area and increases the detection sensitivity. A NO3- detection limit of 0.05 mM (3.1 ppm) is achieved, which is sufficiently lower than the ambient water quality limit of 0.16 mM (10 ppm) set by the United States Environmental Protection Agency. The colorimetric/luminescence of the hybrid material is highly selective to aqueous NO3- anions in the presence of other interfering anions, suggesting that this material is a promising candidate for the rapid NO3- detection and quantification in practical samples without separation, concentration, or other pretreatment steps.

In some applications, this compound(12080-32-9)COA of Formula: C8H12Cl2Pt is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New learning discoveries about 12080-32-9

In some applications, this compound(12080-32-9)SDS of cas: 12080-32-9 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 12080-32-9, is researched, Molecular C8H12Cl2Pt, about Mustards-Derived Terpyridine-Platinum Complexes as Anticancer Agents: DNA Alkylation vs. Coordination, the main research direction is mustard terpyridine platinum complex preparation cancer DNA alkylation coordination.SDS of cas: 12080-32-9.

The development of bifunctional platinum complexes with the ability to interact with DNA via different binding modes is of interest in anticancer metallodrug research. Therefore, we report platinum(II) terpyridine complexes to target DNA by coordination and/or through a tethered alkylating moiety. The platinum complexes were evaluated for their in vitro antiproliferative properties against the human cancer cell lines HCT116 (colorectal), SW480 (colon), NCI-H460 (non-small cell lung), and SiHa (cervix) and generally exhibited potent antiproliferative activity although lower than their resp. terpyridine ligands. 1H NMR spectroscopy and/or ESI-MS studies on the aqueous stability and reactivity with various small biomols., acting as protein and DNA model compounds, were used to establish potential modes of action for these complexes. These investigations indicated rapid binding of complex PtL3 to the biomols. through coordination to the Pt center, while PtL4 in addition alkylated 9-ethylguanine. PtL3 was investigated for its reactivity to the model protein hen egg white lysozyme (HEWL) by protein crystallog. which allowed identification of the Nδ1 atom of His15 as the binding site.

In some applications, this compound(12080-32-9)SDS of cas: 12080-32-9 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Can You Really Do Chemisty Experiments About 7661-33-8

In some applications, this compound(7661-33-8)HPLC of Formula: 7661-33-8 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 7661-33-8, is researched, Molecular C10H10ClNO, about Synthesis of haptens and potential radioligands and development of antibodies to insect growth regulators diflubenzuron and BAY SIR 8514, the main research direction is immunochem analysis diflubenzuron BAYSIR8514; hapten radioligand insect growth regulator.HPLC of Formula: 7661-33-8.

A variety of synthetic approaches were undertaken, leading to potential haptens and radioligands for the benzoylphenylurea insect growth regulators diflubenzuron  [35367-38-5] and BAY SIR 8514  [64628-44-0]. One successful approach involved derivatization of the aniline N by Et 4-bromobutyrate followed by reaction with an appropriate isocyanate and cleavage of the Et ester to yield a free carboxypropyl “”handle””. Useful haptens were also synthesized by using a 3′-phenolic metabolite of diflubenzuron as well as acetate and amine functionalities in the 4′ position while the N-sulfenyl bond proved too unstable for use as an antigen. With the exception of the sulfenylated derivatives, the haptens lacked significant bol. activity on 3 insect species. Following protein coupling by the active ester or water-soluble diimide method, antibodies were raised to 2 diflubenzuron haptens in each of 7 rabbits immunized as demonstrated by radioimmunoassay using [14C]diflubenzuron, Ouchterlony gel diffusion, and immunoelectrophoresis.

In some applications, this compound(7661-33-8)HPLC of Formula: 7661-33-8 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sources of common compounds: 12080-32-9

In some applications, this compound(12080-32-9)Quality Control of Dichloro(1,5-cyclooctadiene)platinum(II) is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: Dichloro(1,5-cyclooctadiene)platinum(II)(SMILESS: C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-],cas:12080-32-9) is researched.Reference of 5-(11bR)-Dinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepin-4-yl-5H-dibenz[b,f]azepine. The article 《Phosphorescent Cyclometalated Platinum(II) Imidazolinylidene Complexes》 in relation to this compound, is published in European Journal of Inorganic Chemistry. Let’s take a look at the latest research on this compound (cas:12080-32-9).

We present the synthesis and characterization of six novel bidentate C-C* cyclometalated platinum(II) complexes derived from saturated N-heterocyclic carbene precursors, namely 1-aryl-3-methyl-1H-4,5-dihydroimidazolium salts. The title compounds were then synthesized by a multi-step reaction, which includes an in situ generation of the silver carbene complex, followed by transmetalation to platinum and subsequent introduction of the β-diketonate ligand. Structural characterization by NMR experiments and solid-state structures prove the cyclometalation and the saturated backbone of the NHC motif. Photophys. and electrochem. properties of the platinum(II) complexes were examined and studied in detail by DFT calculations The title compounds are strongly emissive at room temperature in the sky-blue region of the visible spectrum and show quantum yields of up to 71% in a PMMA matrix.

In some applications, this compound(12080-32-9)Quality Control of Dichloro(1,5-cyclooctadiene)platinum(II) is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Never Underestimate the Influence Of 12080-32-9

In some applications, this compound(12080-32-9)Computed Properties of C8H12Cl2Pt is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Water’s Role in Polymorphic Platinum(II) Complexes, published in 2021-10-04, which mentions a compound: 12080-32-9, Name is Dichloro(1,5-cyclooctadiene)platinum(II), Molecular C8H12Cl2Pt, Computed Properties of C8H12Cl2Pt.

Solvent plays a vital role in the recrystallization process and resulting crystallinity of materials. This role is of such importance that it can control the stability and utility of materials. In this work, the inclusion of a solvent in the crystalline lattice, specifically water, drastically affects the overall stability of two platinum polymorphs. [Pt(tpy)Cl]BF4 (tpy = 2,2′;6’2”-terpyridine) crystallizes in three forms, red (1R) and blue (1B) polymorphs and a yellow nonsolvated form (2). 1R is the more stable of the two polymorphs, whereas 1B loses crystallinity upon dehydration at ambient conditions resulting in the formation of 2. Close examination of the solid-state extended structures of the two polymorphs reveals that 1R has a lattice arrangement that is more conducive to stronger intermol. interactions compared to 1B, thereby promoting greater stability. In addition, these two polymorphs exhibit unique vapochromic responses when exposed to various solvents.

In some applications, this compound(12080-32-9)Computed Properties of C8H12Cl2Pt is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

The effect of reaction temperature change on equilibrium 7661-33-8

In some applications, this compound(7661-33-8)Reference of 1-(4-Chlorophenyl)pyrrolidin-2-one is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Virtanen, P. Olavi I.; Ruostesuo, Pirkko; Ruostesuo, Pirkko published an article about the compound: 1-(4-Chlorophenyl)pyrrolidin-2-one( cas:7661-33-8,SMILESS:O=C1N(C2=CC=C(Cl)C=C2)CCC1 ).Reference of 1-(4-Chlorophenyl)pyrrolidin-2-one. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:7661-33-8) through the article.

The dipole moments of 1-phenyl-2-pyrrolidone and its 2′-methyl, 3′-methyl, 4′-methyl, 2′-chloro, 3′-chloro, 4′-chloro, 2′-methoxy, 3′-methoxy, and 4′-methoxy derivatives were measured in dioxane at 30° and the dipole moments of the 1st 4 compounds also in cyclohexane at 30°. The dipole moments were larger in dioxane than in cyclohexane. The dipole moments of all the compounds except 1-(3-methoxyphenyl)-2-pyrrolidone and 1-(4-methoxyphenyl)-2-pyrrolidone agree with the values calculated by applying Eyring’s treatment and assuming free rotation of the pyrrolidonyl group about the bond joining it to the aromatic ring.

In some applications, this compound(7661-33-8)Reference of 1-(4-Chlorophenyl)pyrrolidin-2-one is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Our Top Choice Compound: 12080-32-9

In some applications, this compound(12080-32-9)Recommanded Product: 12080-32-9 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: Dichloro(1,5-cyclooctadiene)platinum(II), is researched, Molecular C8H12Cl2Pt, CAS is 12080-32-9, about Synthesis and structure of thienyl Fischer carbene complexes of PtII for application in alkyne hydrosilylation, the main research direction is thienyl Fischer carbene platinum complex preparation catalyst alkyne hydrosilylation; crystal structure thienyl Fischer carbene platinum complex; mol structure thienyl Fischer carbene platinum complex; Group 6 thienothienylene carbene complex transmetalation platinum chloride complex.Recommanded Product: 12080-32-9.

Transmetalation of Group 6 thienylene Fischer carbene complexes to Pt(II) precursors yielded new examples of neutral Pt(II) bisethoxycarbene complexes with either 2-thienyl (T) or 5-thieno[2,3-b]thienylene (TT) carbene substituents. The use of analogous aminocarbene group 6 precursors proceeded to give isomeric Pt(II) product mixtures where the resultant bisaminocarbene ligands displayed different orientations due to restricted rotation around the Pt-aminocarbene bond caused by the sterically demanding TT substituents. The well-defined Pt(II) ethoxycarbene complexes were screened as catalyst precursors in the benchmark hydrosilylation reaction employing phenylacetylene and triethylsilane substrates. Marked selectivity for the β-E isomer (E)-triethyl(styryl)silane was observed, and the (pre)catalysts proved recyclable, active in solvent-free reactions, and displaying a high alkyne functional group tolerance.

In some applications, this compound(12080-32-9)Recommanded Product: 12080-32-9 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

New explortion of 16588-26-4

In some applications, this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《o-Halogenated p-nitroaniline and its derivatives》. Authors are Korner, G.; Contardi.The article about the compound:3-Bromo-4-chloronitrobenzenecas:16588-26-4,SMILESS:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl).Safety of 3-Bromo-4-chloronitrobenzene. Through the article, more information about this compound (cas:16588-26-4) is conveyed.

When p-NO2C6H4NH2 is dissolved or suspended in HCl and Cl or Br added a mixture, difficult to sep., of mono- and dihalogenated anilines with the halogen in the o-position is formed. If, however, gaseous Cl (mol. ratio 1 : 1) is passed into the b. HCl solution 2,4-Cl(O2N)C6H3NH2 is almost the sole product. This derivative mixed with some di-Cl derivative is obtained on chlorinating at -o°(Casella & Co., Ger. Pat., 109,189). At room temperature, on adding Cl slowly to the HCl solution, the di-Cl deriv, + quinone are formed. Chlorinating by Noelting’s method, using Ca(ClO)2, gave mixtures Similar results were obtained with Br. These derivatives are obtained by warming 1-nitro-3,4-dibromo (or dichloro) benzene with alc. NH3 in the scaled tube at 190°. The NH2 group substitutes p to NO2. By halogenating these monohalogen derivatives it is possible to get derivatives with 2 different halogens in the same ring. The action of ClI on a glac. AcOH solution of p-NO2C6H4NH2 gives mixtures from which the mono- and di-I derivatives can be separated by EtOH. 1-Nitro-3-chloro-4-aniline, bright yellow needles from hot H2O, m. 104.5°; acetyl derivative, straw-yellow flat prisms from EtOH, m. 139°. Diazotizing in H2SO4 or HNO3 suspension with gaseous HNO2 gives the diazo compound which, by way of the perbromide, goes into 1-nitro-3-chloro-4-bromobenzene, prisms from CHCl2, m. 62°. 1-Nitro-3-chloro-4-iodobenzene, almost colorless needles from EtOH, m. 103°, is obtained similarly, by way of the periodide. 1-Nitro-3-bromo-4-aniline, bright yellow needles, m. 104.5°, which with Ac2O gives the monoacetyl derivative, flat prisms, m. 114°, and the diacetyl derivative, short fat prisms, m. 132°. also from the mono derivative, by the action of Ac2O + traces of POCl3. Diazotizing and halogenating as above gives 1-nitro-3-bromo-4-chlorobenzene, white or colorless prisms, volatil with steam, m. 61°, is identical with the compound similarly obtained from 2,5-Cl(O2N)C6H3NH2. 1-Nitro-3-bromo-4-iodobenzene, prisms from AcOEt, m. 106°, was obtained similarly. 1-Nitro-3-iodo-4-aniline presents 2 forms: (1) stable yellow-red prisms, and (2) the labile forms golden yellow plates in C6H6, below 17°, m. 109°; monoacetyl derivative, bright yellow prisms; diacetyl derivative, more soluble than the mono compound, white needles. The diazo compound, on adding Cl, gives 1-nitro-3-iodo-4-chlorobenzene, needles, m. 78°, identical with the compound obtained similarly with I from 2,5-Cl(O2N)C6H2NH2. 1-Nitro-3,5-dichloro-4-aniline, yellow shining needles, m. 195°, slightly soluble in dilute and concentrate inorganic acids, unchanged by fuming HNO3 in the cold. To diazotize suspend in HNO3 (d. 1.38) and add gaseous HNO2 at o°; on diluting the explosive diazonium nitrate seps., fairly soluble in H2O. Ac2O + traces of POCl3 give the monoacetyl derivative, almost colorless needles, m. 215°, and the diacetyl derivative, monoclinic (Artini, Rend. ist. lombardo sci. lett., [2] 45, 1912), prisms, m. 142.5°, d. 1.565, more soluble than the mono compound In absolute EtOH + some concentrate H2SO4 + EtONO it gives 1-nitro-3,5-dichlorobenzene, plates, m. 65.4°, which on reducing with Sn + HCl gives 3,5-dichloroaniline, needles, m. 51.5°. The latter, by replacing NH3 with Cl, gives 1,3,4-trichlorobenzene, white needles, to. 63.5°, which is also obtained from 2,4,6-Cl3C8H2NH2, m. 77.5°, by replacing NH3, with H. 3,5-Cl2C4H3NH2 by replacing NH2 with Br gave 1-bromo-3,5-dichlorobenzene, needles, m. 75.8°. 1-Iodo-3,5-dichlorobenzene, m. 54°, was obtained similarly and is identical with that prepared similarly from 2,4,6-ICl2C6H2NH2, m. 84°. Anilines containing 3 identical halogen ats. in the 2,4,6-positions may be obtained by direct halogenation of PhNH2 of which they are the end products. The mixed halogenated anilines are made from anilines halogenated in p-position by adding two halogens (Br or ClI) in the o-position in glac. AcOH. o,p- or o,o-dihalogenanilines may even be used, but displacing of weak halogens may take place. All of the theoretically possible trihalogenbenzenes can be obtained by thus substituting halogen for NH2 in anilines. 2,6,4-Cl2(O2N)C6H2NH2 gives 1-nitro-3,4,5-trichlorobenzene, bright yellow prisms, m. 72.5°, volatil with steam; reduction and elimination of NH2 gives 1,2,3-C6H2Cl3, identical with that from 2,6-Cl2C6H3NH2 by the same method. 1-Nitro-3,5-dichloro-4-bromobenzene, from the above aniline, yellow. prisms, m. 88°, volatile with steam; similarly 1-nitro-3,5-dichloro-4-iodobenzene, yellow prisms, m. 154.8°, less volatile; reduction, etc., gives 1,3-dichloro-2-iodobenzene, thin plates, m. 68°, volatile with steam, also from 3,6-C;2C4H3NH2 with I. p-NO3 C4H4NH2 + Br gives 1-nitro-3,5-dibromo-4-aniline, yellow plates, m. 202.5°; Ac2O as above gives the monoacetyl derivative, colorless needles or triclinic prisms, isomorphous with the di-Cl compound, and the diacetyl derivative, prisms, m. 136°, triclinic pinacoidal, a : b : c = 1.0901 : 1 : 0.8325, a = 88° 43′ 4”. β = 70° 49′ 34”. γ = 93° 25′ 39”, d. 1.939.3 Diazotizing the above or 2,4.6-Br2(O2N)C5H2NH3 with EtONO, etc., gives 1-nitro-3,5-dibromobenzene, almost colorless needles, m. 104.5°; on reduction with Sn + HCl, etc., it gives sym.-dibromochlorobenzene, m. 119°, with Cl, or dibromoiodobenzene, m. 124.8°, with 1. Both are easily volatil with steam and may be prepared from the corresponding anilines and the latter also from 2,4,6-IBr2C6H2NH2. 1-Nitro-3,4,5-tribromobenzene, from the o,o-dibromoaniline by replacing NH3 with Br, yellowish prisms, m. 111.9° on reduction, etc., gives 1,2,3-C6H3Br3, m. 87.8°. 1-Nitro-3,5-dibromo-4-chlorobenzene from the same aniline, yellowish prisms, m. 92-7°, on reduction, etc., gives 2,6-Br2C6H3Cl, m. 71°, identical with the compound similarly obtained from 2,6-Br2C6H3NH2 by replacing NH2 with Cl. 1-Nitro-3,5-dibromo-4-iodobenzene, from 2,6,4-Br2(O2N)C6H2NH2, prisms, 135.5°, cannot be reduced to the aniline. The 2,6-Br2C6H2I was obtained from 2,6-Br2C6H3NH2, prisms, m. 72°. 1-Nitro-3,5-diiodo-4-aniline, from p-NO2C6H4NH2 + ClI in AcOH, yellow needles; m. 245°; monoacetyl derivative, yellow needles, m. 249°; diacetyl derivative, paler yellow prisms, m. 171°, triclinic pinacoidal, a : b : c = 0.9682 : 1 : O.7260, α = 83° 6’43”, β = 76°8’29”, γ = 99° 42′ 44”, d. 2.290. 1-Nitro-3,5-diiodobenzene, from the preceding, difficultly volatile with steam, yellowish prisms, m. 104.5°, on reducing with FeSO4 + NH3 gives 3,5-I2C6H2NH3, needles, m. 110°. 2,6,4-I2ClC6H2NH2 gave 1,3-diiodo-5-chlorobenzene, needles, m. 101°, discolors brown in the light. Similarly the 5-bromoaniline gave 1,3-diiodo-5-bromobenzene, m. 140°, slightly volatile with steam. 1,3,5-Triiodobenzene, from 2,4,6-I2C6H2NH2 or 3.5-I2C6H3NH2, opaque needle, m. 184.2°. Decompose of 2,6,4-I2(O2N)C6H2N2NO3 with b. aqueous Cu2Cl2 gave 1-nitro-3,5-diiodo-4-chlorobenzene, needles, m. 110°; reduction with FeSO4 + NH3 gives a poor yield, (NH4)2S gives a better yield of the aniline together with some S-containing compound The aniline gives 2,6-I2C6H3Cl, rhombic plates, m. 82°. 2,6,4-I2(O2N)(C6H2NH2 gives 1-nitro-3,5-diiodo-4-bromobenzene, white needles from EtOH, yellow prisms from CHCl3 m. 125.4°, and 1-nitro-3,4,5-triiodobenzene, yellow prisms from EtOH, contain C6H6 of crystallization when crystallized from C6H6; reduction with FeSO4 + NH3 gives 3,4,5-triiodoaniline with difficulty; (NH4)2S gives sym.-I2C6H2NH2. The I2C6H2NH2 gives 1,2,3-C6H2I2 on changing NH2 for H, m. 116°, which is identical with that from 2,3-I2C6H3NH2. 2,4-Cl(O2N)C6H3NH2 + Br gives 1-nitro-3-chloro-5-bromo-4-aniline, bright Yellow needles, m. 177.4°; monoacetyl derivative, straw-yellow needles, m. 224°; diacetyl derivative, prisms or plates, m. 139°, monoclinic, prismatic, a : b : c = 1.1127 : 1 : 0.8509, β = 70-36°, d. 1-749. 1-Nitro-3-chloro-5-bromobenzene, from the above aniline, plates, m. 81.2°. and this on reducing with Sn + HCl, etc., gives 3-chloro-5-bromoaniline, needles, or prisms. The latter, as well as 2,4,6-BrClIC6H2NH2, m. 110.5°, gives 1-chloro-3-bromo-5-iodobenzene, needles, m. 85.8°. 1-Nitro-3,4-dichloro-5-bromobenzene, yellowish prisms, m. 82.5°, 1-Nitro-3,4-dibromo-5-chlorobenzene, yellowish prisms, m. 99.5°, and 1-nitro-3-chloro-4-iodo-5 bromobenzene, needles, 159°, by replacing NH2 with a halogen in the preceding nitroaniline. 1,2-Dibromo-3-chlorobenzene, by reducing 3,4,5-Br2ClC6H2NO2, rhombic plates. m. 72.6°. 2,4-Cl(O2N)C6H2NH22, in HOAc + ClI gives 1-nitro-3-chloro-5-iodo-4-aniline, bright yellow needles, 195°; monoacetyl derivative, white prisms, m. 207°; diacetyl derivative, prisms, m. 113°, monoclinic, a : b : c = 1.038 :-1 : 0.799, β = 71.44°, d. 1.913. This aniline gives 1-nitro-3-chloro-5-iodobenzene, yellow prisms, m. 70.4° by replacing NH2 with Cl. 1-Nitro-3,4-dichloro-5-iodobenzene, from the aniline with Cl, bright yellow prisms, m. 59°, is not easily reduced by FeSO4 + NH3, but Sn + HCl gives 3,5-CHC6H3NH2, plates, m. 69.8°; with Br the aniline gives 1-nitro-3-chloro-4-bromo-5-iodobenzene, almost colorless needles, m. 95°; and with I it gives 1-nitro-3-chloro-4,5-diiodobenzene, almost colorless needles, m. 146.5°. 3,4,5-Cl2IC6H2NO2 + (NH4)2S in EtOH gives 3,4-Cl2C6H3NH2. 2,4-Br(O2N)C6H3NH2 + CH in HOAc gives 1-nitro-3-bromo-5-iodo-4-aniline, needles, m. 221°; monoacetyl derivative, yellowish prisms, m. 226°; diacetyl derivative, prisms, m. 134°, triclinic pinacoidal, a : b : C = 0.9470 : 1 : 0.7288, α = 83° 59′ 54”, β = 77° 30′ 18”, γ = 99° 6′ 14”, d.2.112. 1-Nitro-3-bromo-5-iodobenzene, by replacing NH2 with H in the preceding aniline, needles, m. 97.5°; 1-nitro-3-bromo-4-chloro-5-iodobenzene, by replacing NH2 with Cl, yellowish prisms or colorless needles, m. 84°.

In some applications, this compound(16588-26-4)Safety of 3-Bromo-4-chloronitrobenzene is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts