The important role of 16588-26-4

Although many compounds look similar to this compound(16588-26-4)Electric Literature of C6H3BrClNO2, numerous studies have shown that this compound(SMILES:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Electric Literature of C6H3BrClNO2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 3-Bromo-4-chloronitrobenzene, is researched, Molecular C6H3BrClNO2, CAS is 16588-26-4, about Structurally Simple Inhibitors of Lanosterol 14α-Demethylase Are Efficacious In a Rodent Model of Acute Chagas Disease. Author is Suryadevara, Praveen Kumar; Olepu, Srinivas; Lockman, Jeffrey W.; Ohkanda, Junko; Karimi, Mandana; Verlinde, Christophe L. M. J.; Kraus, James M.; Schoepe, Jan; Van Voorhis, Wesley C.; Hamilton, Andrew D.; Buckner, Frederick S.; Gelb, Michael H..

We report structure-activity studies of a large number of dialkyl imidazoles as inhibitors of Trypanosoma cruzi lanosterol-14α-demethylase (L14DM). The compounds have a simple structure compared to posaconazole, another L14DM inhibitor that is an anti-Chagas drug candidate. Several compounds display potency for killing T. cruzi amastigotes in vitro with values of EC50 in the 0.4-10 nM range. Two compounds were selected for efficacy studies in a mouse model of acute Chagas disease. At oral doses of 20-50 mg/kg given after establishment of parasite infection, the compounds reduced parasitemia in the blood to undetectable levels, and anal. of remaining parasites by PCR revealed a lack of parasites in the majority of animals. These dialkyl imidazoles are substantially less expensive to produce than posaconazole and are appropriate for further development toward an anti-Chagas disease clin. candidate.

Although many compounds look similar to this compound(16588-26-4)Electric Literature of C6H3BrClNO2, numerous studies have shown that this compound(SMILES:BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts