The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Dihydropyridines. XII. Electronic structure and reactivity of monocyanopyridines and symmetric dicyanopyridines》. Authors are Kuthan, J..The article about the compound:Pyridine-3,5-dicarbonitrilecas:1195-58-0,SMILESS:N#CC1=CC(C#N)=CN=C1).Related Products of 1195-58-0. Through the article, more information about this compound (cas:1195-58-0) is conveyed.
cf. CA 65, 3828a. The electronic structure of 2-cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, 2,6-dicyanopyridine, and 3,5-dicyanopyridine were studied by means of the simple mol. orbital theory (HMO). The reactivity of these compounds toward nucleophilic reagents is discussed with respect to possible formation of corresponding dihydro derivatives or products with transformed functional groups. Ir, N.M.R., and uv spectra of the compounds studied are compared with the calculated values for the bond orders, π-electron densities, and with the theoretical excitation energies. Bond orders and π-electron densities as calculated on the basis of HMO-approximation are correlated with analogous data obtained by the self-consistent-field method.
Although many compounds look similar to this compound(1195-58-0)Related Products of 1195-58-0, numerous studies have shown that this compound(SMILES:N#CC1=CC(C#N)=CN=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts