Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, U.S. Gov’t, P.H.S., Journal of Medicinal Chemistry called Design and Synthesis of Potent Nonpeptidic Farnesyltransferase Inhibitors Based on a Terphenyl Scaffold, Author is Ohkanda, Junko; Lockman, Jeffrey W.; Kothare, Mohit A.; Qian, Yimin; Blaskovich, Michelle A.; Sebti, Said M.; Hamilton, Andrew D., which mentions a compound: 16588-26-4, SMILESS is BrC1=C(C=CC(=C1)[N+](=O)[O-])Cl, Molecular C6H3BrClNO2, Application of 16588-26-4.
By modification of key carboxylate, hydrophobic, and zinc-binding groups projected from a sterically restricted terphenyl scaffold, a series of simple and nonpeptide mimetics of the Cys-Val-Ile-Met tetrapeptide substrate of protein farnesyltransferase (FTase) have been designed and synthesized. A crystal structure of 4-nitro-2-phenyl-3′-methoxycarbonylbiphenyl shows that the terphenyl fragment provides a large hydrophobic surface that potentially mimics the hydrophobic side chains of the three terminal residues in the tetrapeptide. 2-Phenyl-3-{N-[1-(4-cyanobenzyl)-1H-imidazol-5-yl]methyl}amino-3′-carboxylbiphenyl, in which the free thiol group was replaced with a 1-(4-cyanobenzyl)imidazole group, shows submicromolar inhibition activity against FTase in vitro and inhibits H-Ras processing in whole cells.
This literature about this compound(16588-26-4)Application of 16588-26-4has given us a lot of inspiration, and I hope that the research on this compound(3-Bromo-4-chloronitrobenzene) can be further advanced. Maybe we can get more compounds in a similar way.
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts