The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: Pyridine-3,5-dicarbonitrile(SMILESS: N#CC1=CC(C#N)=CN=C1,cas:1195-58-0) is researched.SDS of cas: 18362-64-6. The article 《Three novel zinc(II) metal-organic frameworks based on three tetrazolate ligands: synthesis, structures and photoluminescence》 in relation to this compound, is published in RSC Advances. Let’s take a look at the latest research on this compound (cas:1195-58-0).
Three metal-organic frameworks (MOFs), [Zn(BPT)H2O] (JUC-121), [Zn5(IBT)6]·8[H2NMe2]·DMA (JUC-122) and [Zn(TPD)(H2O)2]·0.5H2O (JUC-123) (JUC = Jilin University, China), H2BPT = (5-bromo-1,3-phenylene)bis(tetrazole), H3IBT = 4,5-bis(tetrazol-5-yl)imidazole and H2TPD = 3,5-di(tetrazol-5-yl)pyridine, were obtained by the reactions of Zn(NO3)2·6H2O and three tetrazolate ligands, which were characterized by single crystal x-ray diffraction, thermal gravimetric analyses (TGA), FTIR spectra (FTIR), elemental anal. (CHN) and powder X-ray diffraction (PXRD). From the crystal structures of these complexes and the coordination modes of the ligands, the authors can see that the tetrazolate ligands have multi-connectivity abilities to obtain intriguing varieties of mol. architectures. JUC-121 displays a three-dimensional (3D) network with the point symbol (4·65)2(42·84)(64·82). JUC-122 shows a two-dimensional (2D) framework with the point symbol (243)2(24)9 and JUC-123 has a 2-dimensional bimodal (3, 3)-connected net with the point symbol (4·82). The solid-state fluorescent spectra of JUC-121, JUC-122, JUC-123 and the free ligands were measured at room temperature
This literature about this compound(1195-58-0)Product Details of 1195-58-0has given us a lot of inspiration, and I hope that the research on this compound(Pyridine-3,5-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts