Interesting scientific research on 12080-32-9

There is still a lot of research devoted to this compound(SMILES:C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-])Reference of Dichloro(1,5-cyclooctadiene)platinum(II), and with the development of science, more effects of this compound(12080-32-9) can be discovered.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: Dichloro(1,5-cyclooctadiene)platinum(II)(SMILESS: C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-],cas:12080-32-9) is researched.Recommanded Product: 4-Chloro-6-(1H-imidazol-1-yl)pyrimidine. The article 《Platinum ω-Alkenyl Compounds as Chemical Vapor Deposition Precursors. Mechanistic Studies of the Thermolysis of Pt[CH2CMe2CH2CH=CH2]2 in Solution and the Origin of Rapid Nucleation》 in relation to this compound, is published in Organometallics. Let’s take a look at the latest research on this compound (cas:12080-32-9).

Cis-bis(η1,η2-2,2-dimethylpent-4-en-1-yl)platinum, Pt[CH2CMe2CH2CH=CH2]2 (3), is a recently discovered CVD precursor for the deposition of highly smooth Pt thin films without nucleation delays on a variety of substrates. This paper describes detailed mechanistic studies of the pathway by which 3 reacts upon being heated in solution In various solvents between 90 and 130°, 3 decomposes to generate ~1 equiv of 4,4-dimethylpentenes by addition of a H atom to the pentenyl ligands in 3. The extra H atoms arise by dehydrogenation of other pentenyl ligands; some of these dehydrogenated ligands are released as Me-substituted methylenecyclobutanes and cyclobutenes. A combination of isotope labeling and kinetic studies suggests that 3 decomposes by C-H activation of both allylic and olefinic C-H bonds to give transient Pt hydride intermediates, followed by reductive elimination steps to form the pentene products, but that the exact mechanism is solvent-dependent. In C6F6, solvent association occurs before C-H bond activation, and the rate-determining step for thermolysis is most likely the formation of a Pt σ complex. In hydrocarbon solvents, the solvent is little involved before C-H bond activation, and the rate-determining step is most likely the formation of a Pt σ complex only for γ-C-H and ε-C-H bond activation, but cleavage or formation of a C-H bond for δ-C-H bond activation. A comparison of the thermolysis reactions under CVD conditions and in solution suggests that the high smoothness of the CVD-grown films is due in part to rapid nucleation (which is a consequence of the availability of low-barrier C=C bond dissociation pathways) and in part to the formation of C-containing species that passivate the Pt surface.

There is still a lot of research devoted to this compound(SMILES:C1=CCC/C=CCC/1.[Pt+2].[Cl-].[Cl-])Reference of Dichloro(1,5-cyclooctadiene)platinum(II), and with the development of science, more effects of this compound(12080-32-9) can be discovered.

Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts