Product Details of 1195-58-0. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: Pyridine-3,5-dicarbonitrile, is researched, Molecular C7H3N3, CAS is 1195-58-0, about In Situ Generation of Electrolyte inside Pyridine-Based Covalent Triazine Frameworks for Direct Supercapacitor Integration. Author is Troschke, Erik; Leistenschneider, Desiree; Rensch, Tilo; Graetz, Sven; Maschita, Johannes; Ehrling, Sebastian; Klemmed, Benjamin; Lotsch, Bettina V.; Eychmueller, Alexander; Borchardt, Lars; Kaskel, Stefan.
The synthesis of porous electrode materials is often linked with the generation of waste that results from extensive purification steps and low mass yield. In contrast to porous carbons, covalent triazine frameworks (CTFs) display modular properties on a mol. basis through appropriate choice of the monomer. Herein, the synthesis of a new pyridine-based CTF material is showcased. The porosity and nitrogen-doping are tuned by a careful choice of the reaction temperature An in-depth structural characterization by using Ar physisorption, XPS, and Raman spectroscopy was conducted to give a rational explanation of the material properties. Without any purification, the samples were applied as sym. supercapacitors and showed a specific capacitance of 141 F g-1. Residual ZnCl2, which acted formerly as the porogen, was used directly as the electrolyte salt. Upon the addition of water, ZnCl2 was dissolved to form the aqueous electrolyte in situ. Thereby, extensive and time-consuming washing steps could be circumvented.
If you want to learn more about this compound(Pyridine-3,5-dicarbonitrile)Product Details of 1195-58-0, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(1195-58-0).
Reference:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts