Simple exploration of (4-Methoxyphenyl)methanol

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Fok, EY; Show, VL; Johnson, AR or send Email.

Safety of (4-Methoxyphenyl)methanol. Authors Fok, EY; Show, VL; Johnson, AR in PERGAMON-ELSEVIER SCIENCE LTD published article about in [Fok, Emily Y.; Show, Veronica L.; Johnson, Adam R.] Harvey Mudd Coll, Dept Chem, 301 Platt Blvd, Claremont, CA 91711 USA in 2021, Cited 65. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Our laboratory has developed catalysts based on earth abundant titanium for asymmetric reactions including intramolecular hydroamination. Previously, we showed that titanium complexes of imine diol ligands showed improved enantioselectivity relative to complexes with bidentate amino alcohol ligands. As the catalyst with the highest selectivity had di-tert-butyl substitution, we sought to increase the steric protection by preparing three new ligands with diaryl substitution. These ligands were readily prepared in two steps: first, synthesis of diaryl substituted salicylaldehydes by a Suzuki coupling and second, a Schiff base condensation with a chiral amino alcohol. After characterizing the ligands, in situ hydroamination/cyclization with 6-methyl-hepta-4,5-dienylamine was carried out at temperatures ranging from 105 degrees C to 135 degrees C to give exclusively 2-(2-methyl-propenyl)-pyrrolidine with enantioselectivity up to 22 %ee. Unexpected dimerization of the catalyst resulted in reduced activity, so the reaction required a catalyst loading of 10-20%. (C) 2021 Elsevier Ltd. All rights reserved.

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Fok, EY; Show, VL; Johnson, AR or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for 105-13-5

Computed Properties of C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Mohammadinezhad, A; Akhlaghinia, B or send Email.

Authors Mohammadinezhad, A; Akhlaghinia, B in SPRINGER published article about BENZYL ALCOHOL; EFFICIENT CATALYST; AROMATIC ALCOHOLS; GRAPHENE OXIDE; NANOPARTICLES; PERFORMANCE; WATER; OXYGEN; BI2WO6; MOF in [Mohammadinezhad, Arezou; Akhlaghinia, Batool] Ferdowsi Univ Mashhad, Fac Sci, Dept Chem, Mashhad 9177948974, Razavi Khorasan, Iran in 2021, Cited 70. Computed Properties of C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

This paper reported an environmentally benign strategy for the synthesis of a magnetic metal-organic framework (Fe3O4@Ni-Co-BTCNPs) via a multi-step procedure. The catalytic performance of Fe3O4@Ni-Co-BTCNPs was evaluated in the selective aerobic oxidation of alcohol substrates (including primary and secondary aliphatic and benzylic alcohols) in water and under solar light irradiation. [GRAPHICS] .

Computed Properties of C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Mohammadinezhad, A; Akhlaghinia, B or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Never Underestimate The Influence Of (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Casas, MP; Lopez-Hortas, L; Diaz-Reinoso, B; Moure, A; Dominguez, H or send Email.

Application In Synthesis of (4-Methoxyphenyl)methanol. In 2021 J SUPERCRIT FLUID published article about CARBON-DIOXIDE EXTRACTION; FLUID EXTRACTION; ANTIOXIDANT ACTIVITY; CHEMICAL-COMPOSITION; FRACTIONATION; PERFORMANCE; VOLATILES; KINETICS; LUPEOL; LINK in [Casas, Maria P.; Lopez-Hortas, Lucia; Moure, Andres; Dominguez, Herminia] Univ Vigo, Dept Chem Engn, CINBIO, Campus Ourense,Edificio Politen, Orense 32004, Spain; [Diaz-Reinoso, Beatriz] Univ Vigo, CITI, Parque Tecnol Galicia,Rua Galicia 2, Orense 32900, Spain in 2021, Cited 38. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Supercritical CO2 was used for the production of extracts from Acacia dealbata flowers. Pressures from 10 to 35 MPa and temperatures from 35? to 55?C were studied to assess their influence on the yield, antiradical properties and composition of the volatiles. The use of ethanol as modifier was also evaluated. Operating at 30 MPa and 45 ?C with 10% ethanol, up to 15% of the ethanol extractables were obtained in 3 h. The selectivity towards alcohol type compounds decreased with time and was enhanced in a sequence of static extraction with pure and ethanol modified CO2 followed by a dynamic stage. The most active fractions showed ABTS radical scavenging activity of 0.22 g Trolox/g extract. Different mathematical models were used to describe the kinetic data. The most abundant compounds in the supercritical extracts were oxygenated triterpenes whereas in conventional ethanolic extracts the main constituents were aliphatic compounds.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Casas, MP; Lopez-Hortas, L; Diaz-Reinoso, B; Moure, A; Dominguez, H or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An update on the compound challenge: C8H10O2

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Huang, M; Li, YW; Lan, XB; Liu, JH; Zhao, CY; Liu, Y; Ke, ZF or send Email.

SDS of cas: 105-13-5. Authors Huang, M; Li, YW; Lan, XB; Liu, JH; Zhao, CY; Liu, Y; Ke, ZF in ROYAL SOC CHEMISTRY published article about in [Huang, Ming] Guangdong Pharmaceut Univ, Sch Clin Pharm, Affiliated Hosp 1, Clin Pharm, Guangzhou 510006, Peoples R China; [Huang, Ming; Li, Yinwu; Lan, Xiao-Bing; Liu, Jiahao; Zhao, Cunyuan; Ke, Zhuofeng] Sun Yat Sen Univ, Sch Chem, PCFM Lab, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China; [Liu, Yan] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China in 2021, Cited 67. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Metal hydride complexes are key intermediates for N-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(s) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in the N-alkylated reaction via reactivity tuning of IRu-H) species by hetero-bidentate ligands. In particular, complex 6cb with a phenyl wingtip group and BArr counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 degrees C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selection via [Ru-H] species in this process.

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Huang, M; Li, YW; Lan, XB; Liu, JH; Zhao, CY; Liu, Y; Ke, ZF or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts