Awesome and Easy Science Experiments about (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L or send Email.

In 2021 ASIAN J ORG CHEM published article about CATALYZED SELECTIVE OXIDATION; AEROBIC OXIDATION; HYDROGEN-PEROXIDE; C-N; COPPER; METAL; ALDEHYDES; NANOPARTICLES; COMPLEXES; EFFICIENT in [Behera, Pradyota Kumar; Choudhury, Prabhupada; Sahu, Santosh Kumar; Sahu, Rashmi Ranjan; Rout, Laxmidhar] Berhampur Univ, Dept Chem, Berhampur 760007, Orissa, India; [Rout, Laxmidhar] IISER, Dept Chem, Berhampur 760010, Odisha, India; [Harvat, Alisha N.; McNulty, Caitlin; Stitgen, Abigail; Scanlon, Joseph] Ripon Coll, Ripon, WI 54971 USA; [Kar, Manoranjan] IIT Patna, Patna 801106, Bihar, India in 2021, Cited 113. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Application In Synthesis of (4-Methoxyphenyl)methanol

Though concept of oxygen bridged bimetallic catalyst for organic reaction is not well understood. Herein, we have tried to explain the concept by experimental as well as its support by full DFT study. We report here a competent protocol for dehydrogenative oxidation of benzylic alcohol using an oxygen bridged bimetallic CuMoO4 nano catalyst. Careful demonstration reveals that oxidation is not effective either with mono-metallic Cu (II) or Mo(VI); instead combination of both the metals through the oxygen bridge [Cu-O-Mo] unexpectedly and interestingly catalyzed the reaction efficiently. The new concept is strongly supported by computational DFT study. DFT study reveals dehydrogenative oxidation is preferred at copper centre over molybdenum and aromatic benzyl alcohols are greatly stabilised. Interaction barrier energy of monometallic CuO and MoO3 catalyst is much higher than bimetallic CuMoO4. Hydrogen transfer has larger barrier heights for CuO (31.5 kcal/mol) and MoO3 (40.3 kcal/mol) than bimetallic CuMoO4.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C8H10O2

Computed Properties of C8H10O2. In 2021 J ORG CHEM published article about FREE AEROBIC OXIDATION; SUPPORTED TEMPO; ASYMMETRIC SULFOXIDATION; BLOCK-COPOLYMERS; CATALYST; METAL; EFFICIENT; DEHYDROGENATION; ALDEHYDES in [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Minist Educ, Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Peoples R China; [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Minist Educ, Ecodyeing & Finishing Engn Res Ctr, Hangzhou 310018, Peoples R China; [Wang, Maolin; Xu, Zhenkai; Shi, Yi; Cai, Fang; Qiu, Jiaqi; Chen, Tao] Zhejiang Sci Tech Univ, Natl Base Int Sci & Technol Cooperat Text & Consu, Hangzhou 310018, Peoples R China; [Shi, Yi; Cai, Fang] Zhejiang Cady Ind Co Ltd, Huzhou 313013, Peoples R China; [Yang, Guang; Hua, Zan] Anhui Agr Univ, Biomass Mol Engn Ctr, Dept Mat Sci & Engn, Hefei 230036, Peoples R China in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Polymeric nanoreactors in water fabricated by the self-assembly of amphiphilic copolymers have attracted much attention due to their good catalytic performance without using organic solvents. However, the disassembly and instability of relevant nanostructures often compromise their potential applicability. Herein, the preparation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-containing nanoreactors by the self-assembly of amphiphilic bottle-brush copolymers has been demonstrated. First, a macromonomer having a norbornenyl polymerizable group was prepared by RAFT polymerization of hydrophobic and hydrophilic monomers. The macromonomer was further subjected to ring-opening metathesis polymerization to produce an amphiphilic bottlebrush copolymer. Further, TEMPO, as a catalyst, was introduced into the hydrophobic block through the activated ester strategy. Finally, TEMPO-functionalized polymeric nanoreactors were successfully obtained by self-assembly in water. The nanoreactors exhibited excellent catalytic activities in selective oxidation of alcohols in water. More importantly, the reaction kinetics showed that the turnover frequency is greatly increased compared to that of the similar nanoreactor prepared from liner copolymers under the same conditions. The outstanding catalytic activities of the nanoreactors from bottlebrush copolymers could be attributed to the more stable micellar structure using the substrate concentration effect. This work presents a new strategy to fabricate stable nanoreactors, paving the way for highly efficient organic reactions in aqueous solutions.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH or send Email.. COA of Formula: C8H10O2

Authors Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH in SPRINGER published article about PARTICLE-SHAPE; BAYER-PROCESS; PHYSICAL-PROPERTIES; CARBON-DIOXIDE; WASTE; NEUTRALIZATION; ADSORBENT; LIME; STABILIZATION; STRENGTH in [Reddy, Peddireddy Sreekanth; Mohanty, Bijayananda] NIT Mizoram, Dept Civil Engn, Aizawl 796012, Mizoram, India; [Reddy, Narala Gangadhara; Rao, Bendadi Hanumantha] ITT Bhubaneswar, Sch Infrastruct, Khorda 752050, Odisha, India; [Reddy, Narala Gangadhara] Shantou Univ, Dept Civil & Environm Engn, Shantou 515063, Guangdong, Peoples R China; [Serjun, Vesna Zalar] Slovenian Natl Bldg & Civil Engn Inst Slovenia, Dept Mat, Ljubljana 1000, Slovenia; [Das, Sarat Kumar] IIT ISM Dhanbad, Dept Civil Engn, Dhanbad 826004, Jharkhand, India; [Reddy, Krishna R.] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL USA in 2021, Cited 205. COA of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In order to conserve natural resources and prevent waste generation, effective utilization of industrial wastes and/or by-products for beneficial engineering applications becomes inevitable. In order to accomplish this, extensive research studies, exploring properties and new applications of waste materials in a sustainable and environmentally friendly manner, have been initiated worldwide. Red mud (RM, also known as bauxite residue) is one of the wastes generated by the aluminium industry and its disposal and utilization have been traditionally hindered due to the extreme alkalinity (pH about 10.5-13.5). To date, no comprehensive review on various properties of RM of different origin and associated challenges in using it as a beneficial engineering material has been performed. The objective of this study is first to critically appraise the current understanding of properties of RM through a comprehensive literature review and detailed laboratory investigations conducted on Indian RM by the authors, to assess and identify the potential engineering applications, and to finally discuss associated challenges in using it in practical applications. Physical, chemical, mineralogical and geotechnical properties of RMs of different origin and production processes are reviewed. Mechanisms behind the pozzolanic reaction of RM under different chemical and mineralogical compositional conditions are discussed. Environmental concerns associated with the use of RM are also raised. Studies relevant to leachability characteristics reveal that most of the measured chemical concentrations are within the permissible regulatory limits. Overall, the review shows that RM disposal and reuse is complicated by its extreme alkalinity, which is also noticed to be influencing multiple engineering properties. But with selected pH amendments, the treated RM is found to have significant potential to be used as an effective and sustainable geomaterial. The assessment is majorly based on the characteristics of Indian RMs; hence the adaptation of the findings to other RMs should be assessed on a case-by-case basis. Moreover, field studies demonstrating the performance of RM in various engineering applications are warranted. [GRAPHICS] .

Welcome to talk about 105-13-5, If you have any questions, you can contact Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH or send Email.. COA of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of (4-Methoxyphenyl)methanol

Quality Control of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or send Email.

Quality Control of (4-Methoxyphenyl)methanol. In 2021 J ORG CHEM published article about ALLYLATION; ALDEHYDES in [Botubol-Ares, Jose Manuel; Jesus Duran-Pena, Maria] Univ Cadiz, Fac Ciencias, Dept Quim Organ, Campus Univ Rio San Pedro S-N,4a Planta, Cadiz 11510, Spain; [Chahboun, Rachid; Jimenez, Fermin; Alvarez-Manzaneda, Enrique] Univ Granada, Fac Ciencias, Inst Biotecnol, Dept Quim Organ, Granada 18071, Spain; [Alvarez-Manzaneda, Ramon] Univ Almeria, Dept Quim & Fis, Area Quim Organ, Almeria 04120, Spain in 2021, Cited 37. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A general and efficient method for the deconjugative alpha-alkylation of alpha,beta-unsaturated aldehydes promoted by a synergistic effect between (BuOK)-Bu-t and NaH, which considerably increases the reaction rate under mild conditions, is reported. The beta,gamma-unsaturated aldehyde, resulting from the alpha-alkylation, is transformed in high yield into the corresponding allyl acetate via a lead(IV) acetate-mediated oxidative fragmentation. This strategy could be used for the construction of the carbon skeleton of a wide variety of alkyl or arylterpenoids.

Quality Control of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What kind of challenge would you like to see in a future of compound:105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C or send Email.. Recommanded Product: 105-13-5

Recommanded Product: 105-13-5. Authors Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C in ROYAL SOC CHEMISTRY published article about in [Zhuang, Xiaohui; Sun, Bin; Su, WeiKe; Jin, Can] Zhejiang Univ Technol, Collaborat Innovat Ctr Yangtze River Delta Reg Gr, Hangzhou, Peoples R China; [Shi, Xiayue; Zhu, Rui; Su, WeiKe; Jin, Can] Zhejiang Univ Technol, Coll Pharmaceut Sci, Hangzhou, Peoples R China in 2021, Cited 58. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A mild and metal-free protocol for visible-light induced intramolecular radical cyclization of N-allyl(propargyl)-2-bromo-2,2-difluoro-N-arylacetamide has been developed. This strategy showed excellent regioselectivity and simple operation to synthesize 4-substituted 3,3-difluoro-gamma-lactams with a broad substrate scope. Moreover, mechanistic studies revealed that this transformation proceeded through a cascade radical-type cyclization and hydrogen atom transfer process with PMDETA as a hydrogen-atom donor.

Welcome to talk about 105-13-5, If you have any questions, you can contact Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C or send Email.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of (4-Methoxyphenyl)methanol

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Lagerspets, E; Valbonetti, E; Eronen, A; Repo, T or concate me.

Quality Control of (4-Methoxyphenyl)methanol. I found the field of Chemistry very interesting. Saw the article A new catalytic approach for aerobic oxidation of primary alcohols based on a Copper(I)-thiophene carbaldimines published in 2021, Reprint Addresses Repo, T (corresponding author), Univ Helsinki, Dept Chem, AI Virtasen Aukio 1, Helsinki 00014, Finland.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol.

We report here novel Cu(I) thiophene carbaldimine catalysts for the selective aerobic oxidation of primary alcohols to their corresponding aldehydes and various diols to lactones or lactols. In the presence of the in situ generated Cu(I) species, a persistent radical (2,2,6,6-tetramethylpiperdine-N-oxyl (TEMPO)) and N-methylimidazole (NMI) as an auxiliary ligand, the reaction proceeds under aerobic conditions and at ambient temperature. Especially the catalytic system of 1-(thiophen-2-yl)-N-(4-(trifluoromethoxy)phenyl)methanimine (ligand L2) with copper(I)-iodide showed high reactivity for all kind of alcohols (benzylic, allylic and aliphatic). In the case of benzyl alcohol even 2.5 mol% of copper loading gave quantitative yield. Beside high activity under aerobic conditions, the catalysts ability to oxidize 1,5-pentadiol to the corresponding lactol (86% in 4 h) and Nphenyldiethanolamine to the corresponding morpholine derivate lactol (86% in 24 h) is particularly noteworthy.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Lagerspets, E; Valbonetti, E; Eronen, A; Repo, T or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An update on the compound challenge: (4-Methoxyphenyl)methanol

COA of Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

COA of Formula: C8H10O2. Recently I am researching about FLUORINATED ALCOHOLS; SOLVENTS; ACCESS; BENZYLATION; ALLYLATION; REAGENTS; ETHERS, Saw an article supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang [2019R01005]; Natural Science Foundation of Zhejiang ProvinceNatural Science Foundation of Zhejiang Province [LY18B020002, LQ20B020005]; Joint Fund of Zhejiang Provincial Natural Science Foundation [LTZ21B020001]. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Li, JS; Xi, WX; Zhong, R; Yang, JG; Wang, L; Ding, HF; Wang, ZM. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Hexafluoroisopropanol (HFIP)-catalyzed direct dehydroxydifluoro-alkylation of benzylic and allylic alcohols with difluoroenoxysilanes is developed. This procedure enables the synthesis of a broad range of alpha,alpha-difluoroketones, a class of highly valuable intermediates and building blocks in medicinal and organic chemistry. Here, we have demonstrated for the first time that HFIP could act as a powerful catalyst for fluorinated carbon-carbon bond formation. The application of this protocol in late-stage dehydroxydifluoroalkylation of potentially bioactive drugs and natural products has also been carried out.

COA of Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Why do aromatic interactions matter of compound:105-13-5

Computed Properties of C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C or send Email.

Computed Properties of C8H10O2. Authors Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C in ROYAL SOC CHEMISTRY published article about in [Zhuang, Xiaohui; Sun, Bin; Su, WeiKe; Jin, Can] Zhejiang Univ Technol, Collaborat Innovat Ctr Yangtze River Delta Reg Gr, Hangzhou, Peoples R China; [Shi, Xiayue; Zhu, Rui; Su, WeiKe; Jin, Can] Zhejiang Univ Technol, Coll Pharmaceut Sci, Hangzhou, Peoples R China in 2021, Cited 58. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A mild and metal-free protocol for visible-light induced intramolecular radical cyclization of N-allyl(propargyl)-2-bromo-2,2-difluoro-N-arylacetamide has been developed. This strategy showed excellent regioselectivity and simple operation to synthesize 4-substituted 3,3-difluoro-gamma-lactams with a broad substrate scope. Moreover, mechanistic studies revealed that this transformation proceeded through a cascade radical-type cyclization and hydrogen atom transfer process with PMDETA as a hydrogen-atom donor.

Computed Properties of C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Zhuang, XH; Shi, XY; Zhu, R; Sun, B; Su, WK; Jin, C or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of (4-Methoxyphenyl)methanol

An article Real-World Data on Osimertinib in Chinese Patients with Pretreated, EGFR T790M Mutation Positive, Advanced Non-Small Cell Lung Cancer: A Retrospective Study WOS:000621647300001 published article about GROWTH-FACTOR RECEPTOR; 1ST-LINE TREATMENT; BRAIN METASTASES; OPEN-LABEL; PHASE-II; RESISTANCE; CHEMOTHERAPY; GEFITINIB; ERLOTINIB; MULTICENTER in [Peng, Da; Dai, Chengcheng; Wang, Zifan; Huang, Ziyi; Peng, Rui; Ma, Xuezhen] Qingdao Univ, Affiliated Qingdao Cent Hosp, Dept Oncol, 127 Siliunan Rd, Qingdao 266042, Shandong, Peoples R China; [Shan, Dongfeng] Qingdao Univ, Affiliated Hosp, Qingdao, Shandong, Peoples R China; [Li, Jie] Jiaozhou Cent Hosp, Dept Oncol, Jiaozhou, Peoples R China; [Zhao, Peng] Qingdao Univ, Affiliated Qingdao Cent Hosp, Biotherapy Ctr, Qingdao, Shandong, Peoples R China in 2021, Cited 25. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Safety of (4-Methoxyphenyl)methanol

Purpose: As a third-generation EGFR TKI has been taken orally, Osimertinib effectively inhibits mutant EGFR, including T790M EGFR resistance mutations. Here, we examined real-world efficacy and tolerability of Osimertinib among Chinese patients with advanced EGFR T790M-mutant NSCLC. Patients and Methods: A total of 106 advanced NSCLC patients who were taking Osimertinib following disease progression after EGFR-TKIs or other treatments were retro-spectively recruited in this study. The PFS and OS after Osimertinib treatment were analyzed as the primary endpoints. Results: Osimertinib was used as a second line and >= 3rd line treatment in 22.6% and 77.4% of the patients, respectively. DCR and ORR were 93.4% and 57.5%, respectively. Median PFS was 12.4 12 (95% CI, 10.5-13.5) months. The PFS was 11 (8.0, 14.0) and 12 (10.3,13.7) months (p = 0.373), in patients with and without CNS metastasis, respectively. PFS in 2nd and >= 3rd line treatment was 11 (9.0, 13.0) and 12.4 12 (8.9, 15.1) months (p = 0.799), respectively. In patients with EGFR exon 19 deletion and exon 21 L858 mutation, the median PFS was 11 (9.2, 12.8) and 12 (9.2, 14.8) months, respectively (p = 0.833). Median PFS in the monotherapy group and combined anti-angiogenesis group was 11 (9.9,12.1) and 14 (11.2,16.8) months, respectively. Median OS after Osimertinib initiation was 27 (19.6, 34.4) months: 15 (6.9, 23.1) and 27 (22, 32) months in patients with and without CNS metastasis (p=0.027), 27 (20.3,33.7) months and (undefined) as second line or >= 3rd line of treatment (p = 0.421), respectively. In patients with exon 19 deletion, the median OS was not reached, and in patients with exon 21 L858 mutations, the median OS was 23 (19.1,29.9) months (p=0.027). Median OS in the monotherapy group was 27 (21.7,32.3) months, and in combined anti-angiogenesis group was not reached (p=0.68). Conclusion: Osimertinib can effectively treat advanced NSCLC with T790M mutations independently of previous treatment lines.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Simple exploration of C8H10O2

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or send Email.

Safety of (4-Methoxyphenyl)methanol. Authors Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY in WILEY-V C H VERLAG GMBH published article about in [Sung, Kihyuk; Lee, Mi-hyun; Cheong, Yeon-Joo; Kim, Yu Kwon; Yu, Sungju; Jang, Hye-Young] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Multi N-heterocyclic carbene(NHC)-modified iridium catalysts were employed in the beta-alkylation of alcohols; dimerization of primary alcohols (Guerbet reaction), cross-coupling of secondary and primary alcohols, and intramolecular cyclization of alcohols. Mechanistic studies of Guerbet reaction, including kinetic experiments, mass analysis, and density functional theory (DFT) calculation, were employed to explain the fast reaction promoted by bimetallic catalysts, and the dramatic reactivity increase of monometallic catalysts at the late stage of the reaction.

Safety of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts