Final Thoughts on Chemistry for (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V or send Email.. Category: alcohols-buliding-blocks

I found the field of Engineering very interesting. Saw the article Tuning the selectivity to aldehyde via pH regulation in the photocatalytic oxidation of 4-methoxybenzyl alcohol and vanillyl alcohol by TiO2 catalysts published in 2021. Category: alcohols-buliding-blocks, Reprint Addresses Augugliaro, V (corresponding author), Univ Palermo, Dipartimento Ingn, Schiavello Grillone Photocatalysis Grp, Viale Sci,Ed 6, I-90128 Palermo, Italy.; Yurdakal, S (corresponding author), Afyon Kocatepe Univ, Fen Edebiyat Fak, Kimya Bolumu, Ahmet Necdet Sezer Kampusu, TR-03200 Afyon, Turkey.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

The influence of pH on the photocatalytic partial oxidation of 4-methoxybenzyl alcohol (MBA) and vanillyl alcohol (VA) to their corresponding aldehydes in aqueous suspension under UVA irradiation was investigated by using poorly crystalline home-prepared and crystalline commercial TiO2 (BDH, Merck and Degussa P25) photocatalysts. The results clearly show as tuning pH can strongly impart selectivity and activity to photocatalytic processes which are often quite unselective in aqueous suspensions. It was found that pH effect on reaction rate and product selectivity strongly depended on TiO2 crystallinity and substrate type. In the case of MBA oxidation, photoreactivity and selectivity were very high at low pH values for all of TiO2 catalysts, and the crystalline samples showed to be more active than the poorly crystalline ones. At pH= 1 the photoactivity of Degussa P25 was the highest one, and 88% selectivity at 50% conversion was determined. At acidic pH values, selectivity and activity were higher in the presence of HCl than H2SO4 or H3PO4. For VA oxidation, high selectivity values were obtained at high pH’s for all of the samples, and the crystalline samples showed higher activity at the alkaline pH values with respect to that observed at the acidic ones. Experiments starting from the obtained products, that are p-anisaldehyde and vanillin, showed that the selectivity depends on the resistance of those compounds to be subjected to further oxidation under the experimental conditions used.

Welcome to talk about 105-13-5, If you have any questions, you can contact Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V or send Email.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What Kind of Chemistry Facts Are We Going to Learn About 105-13-5

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Product Details of 105-13-5

Authors Nkamba, DM; Wembodinga, G; Bernard, P; Ditekemena, J; Robert, A in BMC published article about in [Nkamba, Dalau Mukadi; Wembodinga, Gilbert; Ditekemena, John] Univ Kinshasa, Fac Med, Kinshasa Sch Publ Hlth, Kinshasa, DEM REP CONGO; [Nkamba, Dalau Mukadi; Robert, Annie] Univ Catholique Louvain UCLouvain, Inst Rech Expt & Clin IREC, Pole Epidemiol & Biostat, Clos Chapelle Aux Champs 30,Bte B1-30-13, B-1200 Brussels, Belgium; [Bernard, Pierre] Univ Catholique Louvain UCLouvain, Inst Rech Expt & Clin IREC, Pole Gynecol & Obstet, Brussels, Belgium in 2021, Cited 23. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

BackgroundPoor awareness of obstetric danger signs is a major contributing factor to delays in seeking obstetric care and hence to high maternal mortality and morbidity worldwide. We conducted the current study to assess the level of agreement on receipt of counseling on obstetric danger signs between direct observations of antenatal care (ANC) consultation and women’s recall in the exit interview. We also identified factors associated with pregnant women’s awareness of obstetric danger signs during pregnancy in the Democratic Republic of Congo (DRC)MethodsWe used data from the 2017-2018 DRC Service Provision Assessment survey. Agreement between the observation and woman’s recall was measured using Cohen’s kappa statistic and percent agreement. Multivariable Zero-Inflated Poisson (ZIP) regression was used to identify factors associated with the number of danger signs during pregnancy the woman knew.ResultsOn average, women were aware of 1.51.34 danger signs in pregnancy (range: 0 to 8). Agreement between observation and woman’s recall was 70.7%, with a positive agreement of 16.9% at the country level but ranging from 2.1% in Bandundu to 39.7% in Sud Kivu. Using multivariable ZIP analysis, the number of obstetric danger signs the women mentioned was significantly higher in multigravida women (Adj.IRR=1.38; 95% CI: 1.23-1.55), in women attending a private facility (Adj.IRR=1.15; 95% CI: 1.01-1.31), in women attending a subsequent ANC visit (Adj.IRR=1.11; 95% CI: 1.01-1.21), and in women counseled on danger signs during the ANC visit (Adj.IRR=1.19; 95% CI: 1.05-1.35). There was a regional variation in the awareness of danger signs, with the least mentioned signs in the middle and the most in the eastern provinces.ConclusionsOur findings indicated poor agreement between directly observed counseling and women’s reports that counseling on obstetric danger signs occurred during the current ANC visit. We found that province of residence, provision of counseling on obstetric danger signs, facility ownership, gravidity and the number of ANC visits were predictors of the awareness of obstetric danger signs among pregnant women. These factors should be considered when developing strategies aim at improving women’s awareness about obstetric danger signs in the DRC

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New learning discoveries about 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Huang, M; Li, YW; Lan, XB; Liu, JH; Zhao, CY; Liu, Y; Ke, ZF or send Email.. Category: alcohols-buliding-blocks

Category: alcohols-buliding-blocks. Authors Huang, M; Li, YW; Lan, XB; Liu, JH; Zhao, CY; Liu, Y; Ke, ZF in ROYAL SOC CHEMISTRY published article about in [Huang, Ming] Guangdong Pharmaceut Univ, Sch Clin Pharm, Affiliated Hosp 1, Clin Pharm, Guangzhou 510006, Peoples R China; [Huang, Ming; Li, Yinwu; Lan, Xiao-Bing; Liu, Jiahao; Zhao, Cunyuan; Ke, Zhuofeng] Sun Yat Sen Univ, Sch Chem, PCFM Lab, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China; [Liu, Yan] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China in 2021, Cited 67. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Metal hydride complexes are key intermediates for N-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(s) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in the N-alkylated reaction via reactivity tuning of IRu-H) species by hetero-bidentate ligands. In particular, complex 6cb with a phenyl wingtip group and BArr counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 degrees C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selection via [Ru-H] species in this process.

Welcome to talk about 105-13-5, If you have any questions, you can contact Huang, M; Li, YW; Lan, XB; Liu, JH; Zhao, CY; Liu, Y; Ke, ZF or send Email.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Name: (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Authors Huang, M; Li, YW; Lan, XB; Liu, JH; Zhao, CY; Liu, Y; Ke, ZF in ROYAL SOC CHEMISTRY published article about in [Huang, Ming] Guangdong Pharmaceut Univ, Sch Clin Pharm, Affiliated Hosp 1, Clin Pharm, Guangzhou 510006, Peoples R China; [Huang, Ming; Li, Yinwu; Lan, Xiao-Bing; Liu, Jiahao; Zhao, Cunyuan; Ke, Zhuofeng] Sun Yat Sen Univ, Sch Chem, PCFM Lab, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China; [Liu, Yan] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China in 2021, Cited 67. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Metal hydride complexes are key intermediates for N-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(s) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in the N-alkylated reaction via reactivity tuning of IRu-H) species by hetero-bidentate ligands. In particular, complex 6cb with a phenyl wingtip group and BArr counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 degrees C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selection via [Ru-H] species in this process.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Never Underestimate The Influence Of 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Remy, PA; Peres, C; Dugay, J; Corbi, E; David, N; Vial, JM or send Email.. Recommanded Product: (4-Methoxyphenyl)methanol

Authors Remy, PA; Peres, C; Dugay, J; Corbi, E; David, N; Vial, JM in WILEY published article about 2-DIMENSIONAL GAS-CHROMATOGRAPHY; SOLID-PHASE DISPERSION; GC-MS QUANTIFICATION; SUSPECTED ALLERGENS; QUANTITATIVE-ANALYSIS; VOLATILE COMPOUNDS; DYNAMIC HEADSPACE; SCENTED TOYS; VALIDATION; PRODUCTS in [Remy, Pierre-Alain; Peres, Christophe; Corbi, Elise; David, Nathalie] Chanel, Lab Rech & Anal, 135 Ave Charles de Gaulle, F-92200 Neuilly Sur Seine, France; [Remy, Pierre-Alain; Dugay, Jose; Vial, Jerome] PSL Res Univ, ESPCI Paris, LSABM, CBI,CNRS,UMR 8231, Paris, France in 2021, Cited 53. Recommanded Product: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Two high-resolution mass spectrometers (HRMS) with different analyzer technology, Orbitrap and hybrid quadrupole time-of-flight (QTOF), were compared with a low-resolution mass spectrometer, quadrupole, to analyse a set of 35 difficult allergens. These difficult allergens are commonly coeluted fragrance allergens with matrix compounds, using standard gas chromatography-mass spectrometer conditions, from the extended list of the Scientific Committee on Consumer Safety (SCCS). Although the fundamental role of chromatographic separation has been demonstrated many times, the aim of this work is to demonstrate the benefits of high-resolution. The added value of high-resolution was illustrated in both a qualitative and a quantitative way. For qualitative aspect, the high resolution extracted ion signals of these two detectors were compared with the low-resolution extracted ion signals. About 50% of the coeluted cases observed with the low-resolution detector are easily resolved by the two high-resolution detectors. For the quantitative aspect, an accuracy profile methodology and a performance metric were used to propose an overall evaluation. The Orbitrap mass spectrometer demonstrated a better overall performance, while the QTOF presented similar or even lower quantification performances than the quadrupole on the set of analysed fragrances.

Welcome to talk about 105-13-5, If you have any questions, you can contact Remy, PA; Peres, C; Dugay, J; Corbi, E; David, N; Vial, JM or send Email.. Recommanded Product: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Some scientific research about C8H10O2

Category: alcohols-buliding-blocks. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

An article Synthesis of TEMPO radical decorated hollow porous aromatic frameworks for selective oxidation of alcohols WOS:000612511600015 published article about CONJUGATED MICROPOROUS POLYMERS; AEROBIC OXIDATION; ORGANIC FRAMEWORKS; CATALYTIC-SYSTEM; SUPPORTED TEMPO; CORE-SHELL; SPHERES; DESIGN in [Shen, Yan-Ming; Xue, Yun; Yan, Mi; Mao, Hui-Ling; Cheng, Hu; Chen, Zhuo; Yu, Xiu-Jun; Zhuang, Jin-Liang] Guizhou Normal Univ, Key Lab Funct Mat Chem Guizhou Prov, Sch Chem & Mat Sci, 116 Baoshan Rd North, Guiyang 550001, Peoples R China; [Sui, Zhi-Wei] Natl Inst Metrol, Ctr Adv Measurement Sci, Beijing, Peoples R China; [Zhu, Shao-Bin; Zhuang, Jin-Liang] NanoFCM INC, Xiamen Pioneering Pk Overseas Chinese Scholars, Xiamen 361005, Peoples R China; [Yu, Xiu-Jun] Goethe Univ Frankfurt, Inst Inorgan & Analyt Chem, Max von Laue Str 7, D-60438 Frankfurt, Germany in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Category: alcohols-buliding-blocks

A bottom-up approach was developed to prepare TEMPO radical decorated hollow aromatic frameworks (HPAF-TEMPO) by using TEMPO radical functionalized monomers and SiO2 nanospheres as templates. The accessible inner layer, high density of TEMPO sites, and hybrid micro-/mesopores of the HPAF-TEMPO enable the aerobic oxidation of a broad range of alcohols with high efficiency and excellent selectivity.

Category: alcohols-buliding-blocks. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :C8H10O2

Name: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or send Email.

An article Deconjugative alpha-Alkylation of Cyclohexenecarboxaldehydes: An Access to Diverse Terpenoids WOS:000670661000018 published article about ALLYLATION; ALDEHYDES in [Botubol-Ares, Jose Manuel; Jesus Duran-Pena, Maria] Univ Cadiz, Fac Ciencias, Dept Quim Organ, Campus Univ Rio San Pedro S-N,4a Planta, Cadiz 11510, Spain; [Chahboun, Rachid; Jimenez, Fermin; Alvarez-Manzaneda, Enrique] Univ Granada, Fac Ciencias, Inst Biotecnol, Dept Quim Organ, Granada 18071, Spain; [Alvarez-Manzaneda, Ramon] Univ Almeria, Dept Quim & Fis, Area Quim Organ, Almeria 04120, Spain in 2021, Cited 37. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Name: (4-Methoxyphenyl)methanol

A general and efficient method for the deconjugative alpha-alkylation of alpha,beta-unsaturated aldehydes promoted by a synergistic effect between (BuOK)-Bu-t and NaH, which considerably increases the reaction rate under mild conditions, is reported. The beta,gamma-unsaturated aldehyde, resulting from the alpha-alkylation, is transformed in high yield into the corresponding allyl acetate via a lead(IV) acetate-mediated oxidative fragmentation. This strategy could be used for the construction of the carbon skeleton of a wide variety of alkyl or arylterpenoids.

Name: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Downstream Synthetic Route Of (4-Methoxyphenyl)methanol

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

In 2021 CHEM SCI published article about CATALYZED N-ALKYLATION; C-C; AMINES; PHENALENYL; SPIN; EFFICIENT; AMIDES; HYDROAMINATION; ARYLAMINES; CHEMISTRY in [Banik, Ananya; Ahmed, Jasimuddin; Sil, Swagata; Mandal, Swadhin K.] Indian Inst Sci Educ & Res Kolkata, Dept Chem Sci, Mohanpur 741246, India in 2021, Cited 68. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: 105-13-5

Borrowing hydrogen from alcohols, storing it on a catalyst and subsequent transfer of the hydrogen from the catalyst to an in situ generated imine is the hallmark of a transition metal mediated catalytic N-alkylation of amines. However, such a borrowing hydrogen mechanism with a transition metal free catalytic system which stores hydrogen molecules in the catalyst backbone is yet to be established. Herein, we demonstrate that a phenalenyl ligand can imitate the role of transition metals in storing and transferring hydrogen molecules leading to borrowing hydrogen mediated alkylation of anilines by alcohols including a wide range of substrate scope. A close inspection of the mechanistic pathway by characterizing several intermediates through various spectroscopic techniques, deuterium labelling experiments, and DFT study concluded that the phenalenyl radical based backbone sequentially adds H+, H and an electron through a dearomatization process which are subsequently used as reducing equivalents to the C-N double bond in a catalytic fashion.

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Archives for Chemistry Experiments of 105-13-5

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Venugopala, KN; Deb, PK; Pillay, M; Chopra, D; Chandrashekharappa, S; Morsy, MA; Aldhubiab, BE; Attimarad, M; Nair, AB; Sreeharsha, N; Kandeel, M; Venugopala, R; Mohanlall, V or send Email.

I found the field of Pharmacology & Pharmacy very interesting. Saw the article 4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study published in 2021. Application In Synthesis of (4-Methoxyphenyl)methanol, Reprint Addresses Venugopala, KN (corresponding author), King Faisal Univ, Coll Clin Pharm, Dept Pharmaceut Sci, Al Hasa 31982, Saudi Arabia.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Background: Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). Aims: Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. Materials and Methods: Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4-DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. Results and Discussion: Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having para-trifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5-positions of 1,4- dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski’s rule of five, thereby indicating their potential as drug-like molecules. Conclusion: In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Venugopala, KN; Deb, PK; Pillay, M; Chopra, D; Chandrashekharappa, S; Morsy, MA; Aldhubiab, BE; Attimarad, M; Nair, AB; Sreeharsha, N; Kandeel, M; Venugopala, R; Mohanlall, V or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Interesting scientific research on 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K or send Email.. Formula: C8H10O2

Authors Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K in AMER CHEMICAL SOC published article about in [Yamamoto, Yuki; Ota, Miyuto; Kodama, Shintaro; Michimoto, Kazuki; Nomoto, Akihiro; Ogawa, Akiya] Osaka Prefecture Univ, Grad Sch Engn, Dept Appl Chem, Sakai, Osaka 5998531, Japan; [Furuya, Mitsunori; Kawakami, Kiminori] Mitsubishi Chem Corp, Sci & Innovat Ctr, Yokohama, Kanagawa 2278502, Japan in 2021, Cited 67. Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A green method for the oxidation of alcohols to carboxylic acids was developed using a novel co-catalytic system based on gold, silver, and copper catalysts. This reaction system was conducted under atmospheric oxygen in water and mild conditions to selectively oxidize 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, as a building block for polyethylene furanoate, which is a 100% bio-based, future alternative to the petroleum-based polyethylene terephthalate. Furthermore, various primary alcohols were conveniently oxidized to their corresponding carboxylic acids in up to quantitative yields.

Welcome to talk about 105-13-5, If you have any questions, you can contact Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K or send Email.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts