What unique challenges do researchers face in 105-13-5

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or concate me.

COA of Formula: C8H10O2. Authors Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY in WILEY-V C H VERLAG GMBH published article about in [Sung, Kihyuk; Lee, Mi-hyun; Cheong, Yeon-Joo; Kim, Yu Kwon; Yu, Sungju; Jang, Hye-Young] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Multi N-heterocyclic carbene(NHC)-modified iridium catalysts were employed in the beta-alkylation of alcohols; dimerization of primary alcohols (Guerbet reaction), cross-coupling of secondary and primary alcohols, and intramolecular cyclization of alcohols. Mechanistic studies of Guerbet reaction, including kinetic experiments, mass analysis, and density functional theory (DFT) calculation, were employed to explain the fast reaction promoted by bimetallic catalysts, and the dramatic reactivity increase of monometallic catalysts at the late stage of the reaction.

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Something interesting about 105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.. Formula: C8H10O2

An article Stereoselective 1,4-Addition of Primary Alcohols to gamma-Alkoxy-alpha,beta-unsaturated Esters WOS:000572131900002 published article about ASYMMETRIC CONJUGATE ADDITION; ENANTIOSELECTIVE SYNTHESIS; TETRAHYDROPYRAN; HYDRATION; ACIDS in [Inatomi, Saki; Takayanagi, Yuta; Watanabe, Kento; Toita, Akinori; Yamakoshi, Hiroyuki; Nakamura, Seiichi] Nagoya City Univ, Grad Sch Pharmaceut Sci, Mizuho Ku, 3-1 Tanabe Dori, Nagoya, Aichi 4678603, Japan in 2021, Cited 26. Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The scope and limitations of the diastereoselective 1,4-addition reaction of primary alcohols to gamma-alkoxy-alpha,beta-unsaturated esters were investigated. We found that a variety of sodium alkoxides, generated from the corresponding primary alcohols with NaH, underwent 1,4-addition reactions with (E)-enoates in CH(2)Cl(2)at -23 degrees C to give beta-alkoxy esters in modest yields with good to excellentsyn-selectivity, whereas stereoselectivity was not observed with the use of glycerol derivatives as nucleophiles. Cyclic acetal protection was found to play a pivotal role for the reaction to proceed.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of C8H10O2

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Agarwal, S; Phukan, P; Sarma, D; Deori, K or concate me.

Recently I am researching about BENZYL ALCOHOL; DYE DEGRADATION; CUS; EFFICIENT; EVOLUTION; TIO2; 1,2,3-TRIAZOLES; MICROSPHERES; NANOCRYSTALS; REDUCTION, Saw an article supported by the SERB, IndiaDepartment of Science & Technology (India)Science Engineering Research Board (SERB), India; SERB-DST, India [EEQ/2018/000326]; UGC, IndiaUniversity Grants Commission, India [F.30-467/2019-BSR]; DST, New Delhi, IndiaDepartment of Science & Technology (India) [EMR/2016/002345]; Department of Science and Technology under DST-FIST programmeDepartment of Science & Technology (DOST), PhilippinesDepartment of Science & Technology (India). Computed Properties of C8H10O2. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Agarwal, S; Phukan, P; Sarma, D; Deori, K. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

A series of copper sulfide (CS) nanoparticles (NPs) were synthesized just by varying the amount of the sulfur precursor and have been explored for the first time as a three-way heterogeneous catalyst in the photocatalytic oxidation of a number of aromatic alcohols, photocatalytic degradation and the reduction of water pollutants, and the facile synthesis of pharmaceutically important moiety 4-aryl-NH-1,2,3-triazoles. The green and novel protocol was successfully developed for the synthesis of covellite (CuS, Cu2+) and the covellite-villamaninite (CuS-CuS2) (copper in Cu2+, Cu1+) phases of copper sulfide, employing EDTA both as the chelating and capping agent via a simple precipitation method at room temperature using water as the solvent. A blue shift in the absorption spectra and band gap in the range of 2.02-2.07 eV prompted the investigation of the as-synthesized CS nanoparticles as the photocatalyst under visible light irradiation. In the absence of any oxidizing or reducing agent, covellite CuS nanoparticles showed the highest photocatalytic efficiency for the degradation of methylene blue (MB) and the reduction of carcinogenic and mutagenic Cr(vi) to non-toxic Cr(iii). Interestingly, the mixed phase of CS (CuS-CuS2), where Cu is present in both +1 and +2 oxidation states, was found to be the most efficient catalyst compared to CuS toward the visible light-mediated selective oxidation of various benzyl alcohols to their corresponding aldehydes. However, in the synthesis of substituted NH-1,2,3-triazoles, single-phase CS nanoparticles (i.e., CuS) provided the best catalytic result. This significant outcome certainly opens up the scope for realizing the present demand of low-cost multifunctional semiconductor nano-materials, which will have a huge impact on the economy and environment when they show more than two potential applications.

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Agarwal, S; Phukan, P; Sarma, D; Deori, K or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome and Easy Science Experiments about (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Uygur, M; Kuhlmann, JH; Perez-Aguilar, MC; Piekarski, DG; Mancheno, OG or concate me.

Recommanded Product: (4-Methoxyphenyl)methanol. Authors Uygur, M; Kuhlmann, JH; Perez-Aguilar, MC; Piekarski, DG; Mancheno, OG in ROYAL SOC CHEMISTRY published article about in [Uygur, Mustafa; Kuhlmann, Jan H.; Perez-Aguilar, Maria Carmen; Piekarski, Dariusz G.; Mancheno, Olga Garcia] Westfalische Wilhelms Univ Munster, Organ Chem Inst, Correnstr 36, D-48149 Munster, Germany; [Piekarski, Dariusz G.] Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland in 2021, Cited 80. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A metal- and additive-free methodology for the highly selective, photocatalyzed C-H oxygenation of alkylarenes under air to the corresponding carbonyls is presented. The process is catalyzed by an imide-acridinium that forms an extremely strong photooxidant upon visible light irradiation, which is able to activate inert alkylarenes such as toluene. Hence, this is an easy to perform, sustainable and environmentally friendly oxidation that provides valuable carbonyls from abundant, readily available compounds.

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Uygur, M; Kuhlmann, JH; Perez-Aguilar, MC; Piekarski, DG; Mancheno, OG or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Simple exploration of (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Xiao, WL; Mo, YH; Guo, J; Su, ZS; Dong, SX; Feng, XM or concate me.

Application In Synthesis of (4-Methoxyphenyl)methanol. Authors Xiao, WL; Mo, YH; Guo, J; Su, ZS; Dong, SX; Feng, XM in ROYAL SOC CHEMISTRY published article about in [Xiao, Wanlong; Mo, Yuhao; Guo, Jing; Su, Zhishan; Dong, Shunxi; Feng, Xiaoming] Sichuan Univ, Coll Chem, Key Lab Green Chem & Technol, Minist Educ, Chengdu 610064, Peoples R China in 2021, Cited 64. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

New types of C-2-symmetric chiral macrodiolides are readily obtained via chiral N,N ‘-dioxide-scandium(iii) complex-promoted asymmetric tandem Friedel-Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles. This protocol provides an array of enantioenriched macrodiolides with 16, 18 or 20-membered rings in moderate to good yields with high diastereoselectivities and excellent enantioselectivities through adjusting the length of the tether at the C3 position of indoles. Density functional theory calculations indicate that the formation of macrocycles is more favorable than that of 9-membered-ring lactones in terms of kinetics and thermodynamics. The potential utility of these intriguing chiral macrodiolide molecules is demonstrated in the enantiomeric recognition of aminols and chemical recognition of metal ions.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Xiao, WL; Mo, YH; Guo, J; Su, ZS; Dong, SX; Feng, XM or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or concate me.

Application In Synthesis of (4-Methoxyphenyl)methanol. Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND in [Das, Siuli; Mondal, Rakesh; Chakraborty, Gargi; Guin, Amit Kumar; Paul, Nanda D.] Indian Inst Engn Sci & Technol, Dept Chem, Howrah 711103, India; [Das, Abhishek] Indian Assoc Cultivat Sci, Sch Chem Sci, Kolkata 700032, India published Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach in 2021, Cited 79. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Herein we report an exclusively ligand-centered redox controlled approach for the dehydrogenation of a variety of N-heterocycles using a Zn(II)-stabilized azo-anion radical complex as the catalyst. A simple, easy-to-prepare, and bench-stable Zn(II)-complex (1b) featuring the tridentate arylazo pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline, in the presence of zinc-dust, undergoes reduction to form the azo-anion radical species [1b]which efficiently dehydrogenates various saturated N-heterocycles such as 1,2,3,4-tetrahydro-2-methylquinoline, 1,2,3,4-tetrahydro-isoquinoline, indoline, 2-phenyl-2,3-dihydro-1H-benzoimidazole, 2,3-dihydro-2-phenylquinazolin-4(1H)-one, and 1,2,3,4-tetrahydro-2-phenylquinazolines, among others, under air. The catalyst has further been found to be compatible with the cascade synthesis of these N-heterocycles via dehydrogenative coupling of alcohols with other suitable coupling partners under air. Mechanistic investigation reveals that the dehydrogenation reactions proceed via a one-electron hydrogen atom transfer (HAT) pathway where the zinc-stabilized azo-anion radical ligand abstracts the hydrogen atom from the organic substrate(s), and the whole catalytic cycle proceeds via the exclusive involvement of the ligand-centered redox events where the zinc acts only as the template.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for 105-13-5

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, H; Forootan, P; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or concate me.

An article Novel oxovanadium and dioxomolybdenum complexes of tridentate ONO-donor Schiff base ligand: Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity for the selective oxidation of benzylic alcohols WOS:000652819900001 published article about AEROBIC OXIDATION; CIS-DIOXOMOLYBDENUM(VI) COMPLEXES; MOLYBDENUM(VI) COMPLEX; HYDROGEN-PEROXIDE; MOLECULAR-OXYGEN; SC-XRD; EPOXIDATION; METAL; EFFICIENT; BENZALDEHYDE in [Kargar, Hadi] Ardakan Univ, Dept Chem Engn, Fac Engn, POB 184, Ardakan, Iran; [Forootan, Pooran; Fallah-Mehrjardi, Mehdi; Behjatmanesh-Ardakani, Reza] Payame Noor Univ, Dept Chem, Tehran 193953697, Iran; [Rudbari, Hadi Amiri] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran; [Munawar, Khurram Shahzad] Univ Sargodha, Dept Chem, Punjab, Pakistan; [Munawar, Khurram Shahzad] Univ Mianwali, Dept Chem, Mianwali, Pakistan; [Ashfaq, Muhammad; Tahir, Muhammad Nawaz] Univ Sargodha, Dept Phys, Punjab, Pakistan in 2021, Cited 98. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. SDS of cas: 105-13-5

Two new oxovanadium and dioxomolybdenum Schiff base complexes, [VvO(L)(OCH3)(CH3OH)] and [MoVIO2(L) (CH2CH3OH)], were synthesized by treating an ONO-donor type Schiff base ligand (H2L) derived by condensation of 5-nitrosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)2 and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, multinuclear (1H, 13C) NMR, elemental analysis and the most authentic single crystal X-ray diffraction analysis. In both complexes the geometry around the central metal ions was distorted octahedral as revealed by the data collected from diffraction studies. Theoretical calculation of the synthesized compounds were carried out by DFT as well as TD-DFT using B3LYP method by employing the Def2-TZVP basis set. The findings of theoretical data indicated that the calculated results are in accordance with the experimental findings. Moreover, the catalytic efficiencies of both complexes were investigated by oxidizing the benzylic alcohols in the presence of urea hydrogen peroxide (UHP) in acetonitrile.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, H; Forootan, P; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for C8H10O2

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, H; Bazrafshan, M; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or concate me.

In 2021 POLYHEDRON published article about AEROBIC OXIDATION; BENZYLIC ALCOHOLS; C-H; COPPER; ALDEHYDES; MILD in [Kargar, Hadi] Ardakan Univ, Dept Chem Engn, Fac Engn, POB 184, Ardakan, Iran; [Bazrafshan, Maryam; Fallah-Mehrjardi, Mehdi; Behjatmanesh-Ardakani, Reza] Payame Noor Univ, Dept Chem, Tehran 193953697, Iran; [Rudbari, Hadi Amiri] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran; [Munawar, Khurram Shahzad] Univ Sargodha, Dept Chem, Punjab, Pakistan; [Munawar, Khurram Shahzad] Univ Mianwali, Dept Chem, Mianwali, Pakistan; [Ashfaq, Muhammad; Tahir, Muhammad Nawaz] Univ Sargodha, Dept Phys, Punjab, Pakistan in 2021, Cited 56. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Formula: C8H10O2

For the first time, two new oxovanadium and dioxomolybdenum Schiff base complexes, VOL(OMe) and MoO2L, were synthesized through the reaction of a ONO tridentate Schiff base ligand (H2L) derived from the condensation of 5-bromosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)(2) and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, H-1 NMR, C-13 NMR, elemental analysis (CHN) and the most authentic single crystal X-ray diffraction analysis (SC-XRD). The geometry around the central metal ion in MoO2L was distorted octahedral as revealed by the data collected from diffraction studies. Non-covalent interactions that are responsible for crystal packing are explored by Hirshfeld surface analysis. Theoretical calculations of the synthesized compounds, carried out by DFT at B3LYP/Def2-TZVP level of theory, indicated that the calculated results are in agreement with the experimental findings. Moreover, the catalytic activities of both complexes were investigated for the selective oxidation of benzylic alcohols using urea hydrogen peroxide (UHP) in acetonitrile. (C) 2021 Elsevier Ltd. All rights reserved.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kargar, H; Bazrafshan, M; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Agarwal, S; Phukan, P; Sarma, D; Deori, K or concate me.

In 2021 NANOSCALE ADV published article about BENZYL ALCOHOL; DYE DEGRADATION; CUS; EFFICIENT; EVOLUTION; TIO2; 1,2,3-TRIAZOLES; MICROSPHERES; NANOCRYSTALS; REDUCTION in [Agarwal, Soniya; Phukan, Parmita; Sarma, Diganta; Deori, Kalyanjyoti] Dibrugarh Univ, Dept Chem, Dibrugarh 786004, Assam, India in 2021, Cited 49. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. SDS of cas: 105-13-5

A series of copper sulfide (CS) nanoparticles (NPs) were synthesized just by varying the amount of the sulfur precursor and have been explored for the first time as a three-way heterogeneous catalyst in the photocatalytic oxidation of a number of aromatic alcohols, photocatalytic degradation and the reduction of water pollutants, and the facile synthesis of pharmaceutically important moiety 4-aryl-NH-1,2,3-triazoles. The green and novel protocol was successfully developed for the synthesis of covellite (CuS, Cu2+) and the covellite-villamaninite (CuS-CuS2) (copper in Cu2+, Cu1+) phases of copper sulfide, employing EDTA both as the chelating and capping agent via a simple precipitation method at room temperature using water as the solvent. A blue shift in the absorption spectra and band gap in the range of 2.02-2.07 eV prompted the investigation of the as-synthesized CS nanoparticles as the photocatalyst under visible light irradiation. In the absence of any oxidizing or reducing agent, covellite CuS nanoparticles showed the highest photocatalytic efficiency for the degradation of methylene blue (MB) and the reduction of carcinogenic and mutagenic Cr(vi) to non-toxic Cr(iii). Interestingly, the mixed phase of CS (CuS-CuS2), where Cu is present in both +1 and +2 oxidation states, was found to be the most efficient catalyst compared to CuS toward the visible light-mediated selective oxidation of various benzyl alcohols to their corresponding aldehydes. However, in the synthesis of substituted NH-1,2,3-triazoles, single-phase CS nanoparticles (i.e., CuS) provided the best catalytic result. This significant outcome certainly opens up the scope for realizing the present demand of low-cost multifunctional semiconductor nano-materials, which will have a huge impact on the economy and environment when they show more than two potential applications.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Agarwal, S; Phukan, P; Sarma, D; Deori, K or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Brief introduction of 105-13-5

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Islam, S; Khan, W or concate me.

I found the field of Science & Technology – Other Topics very interesting. Saw the article Synthesis of Dendritic Ligand Assisted Zn/Cu Bimetallic Nanoparticles as a Highly Active Green Catalyst for Chemoselective Oxidation and Reduction Reaction published in 2021. HPLC of Formula: C8H10O2, Reprint Addresses Khan, W (corresponding author), Bangladesh Univ Engn & Technol BUET, Fac Engn, Dept Chem, Dhaka 1000, Bangladesh.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

The dendritic ligand 2, 4, 6-tris (di-4-chlorobenzamido)-1, 3, 5-triazine3supported Zn/Cu (1:1) 4a, 2, 4, 6-tris (di-4-chlorobenzamido)-1, 3, 5-triazine3supported Zn/Cu (1:2) 4b, and 2, 4, 6-tris (di-4-chlorobenzamido)-1, 3, 5-triazine3supported Zn/Cu (2:1) 4cbimetallic nanoparticles (NPs) were synthesized successfully by following the co-complexation route in which the desired molar ratio of Zn and Cu was confirmed by the obtained results of electron diffraction X-ray and X-ray fluorescence spectroscopy analysis. The average particle size of these NPs was detected as 15-20 nm from transmission electron microscopy investigations and agglomerate spherical surface morphology was found by scanning electron microscopy, whereas the face-centered cubic structure of these bimetallic NPs was observed by X-ray diffraction assessment. Also, the formation of the ligand was proven by IR,(HNMR)-H-1,(CNMR)-C-13, and elemental analysis. Remarkably, the chemoselective oxidation of aromatic alcohols to the corresponding aldehydes or ketones at 25 min and reduction of aromatic nitro substituents to the corresponding aniline at 20 min in aqueous medium at room temperature have been studied by the most effective catalyst Zn/Cu (2:1) 4cNPs among other molar ratios of Zn/Cu (1:1)4aand Zn/Cu (1:2) 4bNPs under atmospheric air (O-2) conditions with good to excellent yields. This green catalytic approach of Zn/Cu (2:1) 4cNPs catalytic was easily recovered by simple filtration and recycled at least five consecutive runs without a noticeable loss of its catalytic effectiveness.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Islam, S; Khan, W or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts