Something interesting about C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Lee, Y; Yoon, S or concate me.. Category: alcohols-buliding-blocks

Category: alcohols-buliding-blocks. Padmanaban, S; Lee, Y; Yoon, S in [Padmanaban, Sudakar; Yoon, Sungho] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea; [Padmanaban, Sudakar; Lee, Yunho] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea published Chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP in 2021, Cited 77. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Selective hydrogenation of the carbonyl functional group of alpha,beta-unsaturated carbonyl compounds affords industrially important allylic alcohols. However, achieving the selective reduction of the carbonyl group in the presence of the activated olefinic group is challenging. Therefore, the development of a highly chemoselective, efficient, and recyclable catalyst for this transformation is greatly desirable from the industrial and environmental viewpoints. In this study, a Ru-immobilized bisphosphine-based porous organic polymer (Ru@PP-POP) was used as an efficient heterogeneous catalyst for chemoselective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol with high chemoselectivity (98%) and excellent recyclability. To the best of our knowledge, the catalyst, Ru@PP-POP showed a high turnover number (970) and a high turnover frequency (240h(1)) which is the best activity obtained using a phosphine based heterogeneous Ru-catalyst in this transformation. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Lee, Y; Yoon, S or concate me.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Absolute Best Science Experiment for C8H10O2

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Palav, A; Misal, B; Ganwir, P; Badani, P; Chaturbhuj, G or concate me.

Palav, A; Misal, B; Ganwir, P; Badani, P; Chaturbhuj, G in [Palav, Amey; Misal, Balu; Ganwir, Prerna; Chaturbhuj, Ganesh] Inst Chem Technol, Mumbai 400019, Maharashtra, India; [Palav, Amey; Misal, Balu] Loba Chem Pvt Ltd, Res & Dev Ctr, Tarapur 401506, Thane, India; [Badani, Purav] Univ Mumbai, Dept Chem, Mumbai 400098, Maharashtra, India published Rapid, chemoselective and mild oxidation protocol for alcohols and ethers with recyclable N-chloro-N-(phenylsulfonyl)benzenesulfonamide in 2021, Cited 42. HPLC of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Chlorine is the 20th most abundant element on the earth compared to bromine, iodine, and fluorine, a sulfonimide reagent, N-chloro-N-(phenylsulfonyl)benzenesulfonamide (NCBSI) was identified as a mild and selective oxidant. Without activation, the reagent was proved to oxidize primary and secondary alcohols as well as their symmetrical and mixed ethers to corresponding aldehydes and ketones. With recoverable PS-TEMPO catalyst, selective oxidation over chlorination of primary and secondary alcohols and their ethers with electron-donating substituents was achieved. The reagent precursor of NCBSI was recovered quantitatively and can be reused for synthesizing NCBSI. (C) 2021 Elsevier Ltd. All rights reserved.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Palav, A; Misal, B; Ganwir, P; Badani, P; Chaturbhuj, G or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of (4-Methoxyphenyl)methanol

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Jing, WD; Li, H; Xiao, PW; Liu, BL; Luo, JH; Wang, RW; Qiu, SL; Zhang, ZT or concate me.

Authors Jing, WD; Li, H; Xiao, PW; Liu, BL; Luo, JH; Wang, RW; Qiu, SL; Zhang, ZT in ROYAL SOC CHEMISTRY published article about METAL-ORGANIC FRAMEWORK; SELECTIVE OXIDATION; SOLID NANOPARTICLES; CATALYZED REACTIONS; PHASE INVERSION; EMULSIONS; PARTICLES; INTERFACE; CLUSTERS; SIZE in [Jing, Wendan; Li, Hui; Liu, Bolun; Wang, Runwei; Qiu, Shilun; Zhang, Zongtao] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China; [Xiao, Peiwen; Luo, Jianhui] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China; [Xiao, Peiwen; Luo, Jianhui] CNPC, Key Lab Nano Chem KLNC, Beijing 100083, Peoples R China in 2021, Cited 43. Computed Properties of C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Organic reactors in a green solvent (water) is the goal of sustainable development. Green nanoreactors with excellent amphiphilicity and catalytic activity are strongly desired. Herein, a novel amphiphilic nanoreactor Pd@amZSM-5 with ultrasmall size has been successfully synthesized via a simple one-step oil bath method, subjected to the modification-etching-modification strategy and in situ reduction of Pd2+. Ultrasmall Pd@amZSM-5 nanoreactors (60 nm) with hierarchical structures showed outstanding amphiphilicity for forming Pickering emulsions with fine uniform droplets (50 mu m). Fine droplets formed short diffusion distances, which can significantly improve the catalytic activity in biphasic reactions. Moroever, the ultrasmall Pd@amZSM-5 nanoreactors demonstrated excellent catalytic activity for the selective oxidation of alcohols in water using air as the oxidant. Alkali was not present in the reaction system. The hydrophilic aminopropyl groups on the surface of the Pd@amZSM-5 nanoreactors not only changed the affinity of the zeolite surface and provided targeting points for Pd nanoparticles but also provided an alkaline environment for the selective oxidation of alcohols. The ultrasmall Pd@amZSM-5 nanoreactors presented excellent universality for aromatic alcohols (with >90% conversion and >90% selectivity) and allylic alcohols (with 100% conversion and 100% selectivity).

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Jing, WD; Li, H; Xiao, PW; Liu, BL; Luo, JH; Wang, RW; Qiu, SL; Zhang, ZT or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What about chemistry interests you the most 105-13-5

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, MM; Ma, YL; Lv, BL; Hua, FL; Meng, SY; Lei, XD; Wang, QT; Su, BT; Lei, ZQ; Yang, ZW or concate me.

An article Fe Doped MIL-101/Graphene Nanohybrid for Photocatalytic Oxidation of Alcohols Under Visible-Light Irradiation WOS:000604191700004 published article about METAL-ORGANIC FRAMEWORK; SELECTIVE OXIDATION; AROMATIC ALCOHOLS; HYDROGEN-PRODUCTION; REACTIVE DYE; NANOCOMPOSITE; EFFICIENT; MIL-101; NANOPARTICLES; PERFORMANCE in [Wang, Mingming; Ma, Yali; Lv, Bolin; Hua, Fenglin; Meng, Shuangyan; Lei, Xuedi; Wang, Qingtao; Su, Bitao; Lei, Ziqiang; Yang, Zhiwang] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Polymer Mat Gansu Prov, Key Lab Ecofunct Polymer Mat,Minist Educ, Lanzhou 730070, Peoples R China in 2021, Cited 44. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Computed Properties of C8H10O2

A novel photoactive porous material of GR/FeMIL-101 based on FeMIL-101 metal organic frameworks (MOFs) was successfully synthesized via a simple hydrothermal method. The structural and photoelectric properties of the GR/FeMIL-101 was analyzed by XRD, SEM, TEM, TGA, XPS, UV-vis DRS, FT-IR, PL and EIS methods. The photocatalytic performance for the selective oxidation of benzyl alcohol with GR/FeMIL-101 as catalysts was evaluated under visible light irradiation. The results showed that the GR/FeMIL-101 nanohybrid had better photocatalytic performance than both of FeMIL-101 and the pristine MIL-101. It was further found that the incorporation of Fe and MIL-101 caused valence fluctuations of Fe3+/Fe2+ which improved the absorption of visible-light and increased the separation efficiency of photogenerated charges. In addition, the combination of FeMIL-101 and GR could further promote the transfer rate of the photoelectrons. The mechanism of the reaction revealed that center dot O-2(-) was the dominating active specie in this reaction through active species trapping experiments. [GRAPHICS] .

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, MM; Ma, YL; Lv, BL; Hua, FL; Meng, SY; Lei, XD; Wang, QT; Su, BT; Lei, ZQ; Yang, ZW or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Research in C8H10O2

Safety of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tabaru, K; Nakatsuji, M; Itoh, S; Suzuki, T; Obora, Y or concate me.

Safety of (4-Methoxyphenyl)methanol. Authors Tabaru, K; Nakatsuji, M; Itoh, S; Suzuki, T; Obora, Y in ROYAL SOC CHEMISTRY published article about in [Tabaru, Kazuki; Nakatsuji, Masato; Itoh, Satoshi; Obora, Yasushi] Kansai Univ, Fac Chem Mat & Bioengn, Dept Chem & Mat Engn, Suita, Osaka 5648680, Japan; [Suzuki, Takeyuki] Osaka Univ, Inst Sci & Ind Res ISIR, Comprehens Anal Ctr, 8-1 Mihogaoka, Osaka 5670057, Japan in 2021, Cited 16. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

We report N,N-dimethylformamide-stabilised Pd nanoparticle (Pd NP)-catalysed transfer vinylation of alcohols from vinyl ether. Pd NPs combined with bathophenanthroline exhibited high catalytic activity. This reaction proceeded with low catalyst loading and the catalyst remained effective even after many rounds of recycling. The observation of the catalyst using transmission electron microscopy and dynamic light scattering implied no deleterious aggregation of Pd NPs.

Safety of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tabaru, K; Nakatsuji, M; Itoh, S; Suzuki, T; Obora, Y or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of 105-13-5

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tsai, WL; Nash, MS; Rosenbaum, DJ; Prince, SE; D’Aloisio, AA; Neale, AC; Sandler, DP; Buckley, TJ; Jackson, LE or concate me.

An article Types and spatial contexts of neighborhood greenery matter in associations with weight status in women across 28 US communities WOS:000663724900007 published article about ECOSYSTEM SERVICES; PHYSICAL-ACTIVITY; RESIDENTIAL GREENNESS; OBESITY; SPACE; WALKING; HEALTH; COHORT; CLASSIFICATION; ACCESSIBILITY in [Tsai, Wei-Lun; Rosenbaum, Daniel J.; Prince, Steven E.; Neale, Anne C.; Buckley, Timothy J.; Jackson, Laura E.] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA; [Nash, Maliha S.] US EPA, Off Res & Dev, Newport, OR USA; [D’Aloisio, Aimee A.] Social & Sci Syst, Durham, NC USA; [Sandler, Dale P.] NIEHS, POB 12233, Res Triangle Pk, NC 27709 USA in 2021, Cited 72. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Excess body weight is a risk factor for many chronic diseases. Studies have identified neighborhood greenery as supportive of healthy weight. However, few have considered plausible effect pathways for ecosystem services (e. g., heat mitigation, landscape aesthetics, and venues for physical activities) or potential variations by climate. This study examined associations between weight status and neighborhood greenery that capture ecosystem services most relevant to weight status across 28 U.S. communities. Weight status was defined by body mass index (BMI) reported for 6591 women from the U.S. Sister Study cohort. Measures of greenery within street and circular areas at 500 m and 2000 m buffer distances from homes were derived for each participant using 1 m land cover data. Street area was defined as a 25 m-wide zone on both sides of street centerlines multiplied by the buffer distances, and circular area was the area of the circle centered on a home within each of the buffer distances. Measures of street greenery characterized the pedestrian environment to capture physically and visually accessible greenery for shade and aesthetics. Circular greenery was generated for comparison. Greenery types of tree and herbaceous cover were quantified separately, and a combined measure of tree and herbaceous cover (i.e., aggregate greenery) was also included. Mixed models accounting for the clustering at the community level were applied to evaluate the associations between neighborhood greenery and the odds of being overweight or obese (BMI > 25) with adjustment for covariates selected using gradient boosted regression trees. Analyses were stratified by climate zone (arid, continental, and temperate). Tree cover was consistently associated with decreased odds of being overweight or obese. For example, the adjusted odds ratio [AOR] was 0.92, 95% Confidence Interval [CI]: 0.88-0.96, given a 10% increase in street tree cover at the 2000 m buffer across the 28 U.S. communities. These associations held across climate zones, with the lowest AOR in the arid climate (AOR: 0.74, 95% CI: 0.54-1.01). In contrast, associations with herbaceous cover varied by climate zone. For the arid climate, a 10% increase in street herbaceous cover at the 2000 m buffer was associated with lower odds of being overweight or obese (AOR: 0.75, 95% CI: 0.55-1.03), whereas the association was reversed for the temperate climate, the odds increased (AOR: 1.19, 95% CI: 1.05-1.35). Associations between greenery and overweight/obesity varied by type and spatial context of greenery, and climate. Our findings add to a growing body of evidence that greenery design in urban planning can support public health. These findings also justify further defining the mechanism that underlies the observed associations.

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tsai, WL; Nash, MS; Rosenbaum, DJ; Prince, SE; D’Aloisio, AA; Neale, AC; Sandler, DP; Buckley, TJ; Jackson, LE or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Now Is The Time For You To Know The Truth About 105-13-5

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, K; Chen, H; Dai, XY; Huang, XP; Feng, ZQ or concate me.

I found the field of Chemistry very interesting. Saw the article Palladium-catalyzed one-pot synthesis of 2-substituted quinazolin-4(3H)-ones from o-nitrobenzamide and alcohols published in 2021. Application In Synthesis of (4-Methoxyphenyl)methanol, Reprint Addresses Feng, ZQ (corresponding author), Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing Key Lab Act Subst Discovery & Drugabil Ev, 1 Xiannongtan St, Beijing 100050, Peoples R China.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Palladium-catalyzed 2-substituted quinazolin-4(3H)-one formation from readily available o-nitrobenzamides and alcohols using hydrogen transfer is described. Various quinazolin-4(3H)-ones were obtained in good to high yields. The cascade reaction including alcohol oxidation, nitro reduction, condensation, and dehydrogenation occurs without any added reducing or oxidizing agent.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, K; Chen, H; Dai, XY; Huang, XP; Feng, ZQ or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shi, ZQ; Qu, XJ; Dai, JY; Zou, HB; Zhang, ZT; Wang, RW; Qiu, SL or concate me.

Authors Shi, ZQ; Qu, XJ; Dai, JY; Zou, HB; Zhang, ZT; Wang, RW; Qiu, SL in ELSEVIER SCIENCE SA published article about METAL-ORGANIC FRAMEWORKS; SELECTIVE OXIDATION; AEROBIC OXIDATION; EFFICIENT OXIDATION; QUANTUM DOTS; CARBON DOTS; NANOPARTICLES; GOLD; DRIVEN; OXYGEN in [Shi, Zhiqiang; Qu, Xuejian; Dai, Jinyu; Zhang, Zongtao; Wang, Runwei; Qiu, Shilun] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Coll Chem, Changchun 130012, Peoples R China; [Zou, Houbing] Shanxi Univ, Sch Chem & Chem Engn, 92 Wucheng Rd, Taiyuan 030006, Peoples R China in 2021, Cited 54. Name: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Exploring catalytic processes performed under natural conditions is interesting, but there remains a great challenge in developing highly efficient catalysts for natural oxidation of alcohols. Herein, we report a chloroplast-like catalyst comprised of photoactive carbon dots (CDs), catalytically active Pt nanoparticles, and amphiphilic nanotubes. Under simulated and real natural reaction conditions, our catalysts exhibited remarkable activity and long-term reusability for the oxidation of various alcohols, significantly outperforming that of other counterpart catalysts and reported thermal/photocatalytic systems. It was demonstrated that when the carbon dots and the amphiphilic nanotubes respectively played a role in the light-harvesting and the substrate transport the Pt/CDs heterointerface acted as the active center for the matter conversion. Such an elaborate cooperation, an advanced process in the photosynthesis of plant, contributed to the excellent catalytic performance. This contribution provides a new design concept for artificial photocatalysts, which is very promising for developing sustainable catalytic processes.

Name: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shi, ZQ; Qu, XJ; Dai, JY; Zou, HB; Zhang, ZT; Wang, RW; Qiu, SL or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New learning discoveries about 105-13-5

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Biriukov, KO; Vinogradov, MM; Afanasyev, OI; Vasilyev, DV; Tsygankov, AA; Godovikova, M; Nelyubina, YV; Loginov, DA; Chusov, D or concate me.

An article Carbon monoxide-driven osmium catalyzed reductive amination harvesting WGSR power WOS:000664034700001 published article about GAS SHIFT REACTION; PRIMARY AMINES; NUCLEOPHILIC ALLYLATION; MOLECULAR COMPLEXITY; ALDEHYDES; RUTHENIUM; HYDROGEN; KETONES; CL; NITROARENES in [Biriukov, Klim O.; Vinogradov, Mikhail M.; Afanasyev, Oleg, I; Tsygankov, Alexey A.; Godovikova, Maria; Nelyubina, Yulia, V; Loginov, Dmitry A.; Chusov, Denis] Russian Acad Sci INEOS RAS, AN Nesmeyanov Inst Organoelement Cpds, Vavilova St 28, Moscow, Russia; [Vasilyev, Dmitry V.] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Egerlandstr 3, D-91058 Erlangen, Germany; [Loginov, Dmitry A.; Chusov, Denis] GV Plekhanov Russian Univ Econ, 36 Stremyanny Per, Moscow 117997, Russia in 2021, Cited 71. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Herein, we present the first example of Os-catalyzed efficient reductive amination under water-gas shift reaction conditions. The developed catalytic systems are formed in situ in aqueous solutions, employ as small as 0.0625 mol% osmium and are capable of delivering reductive amination products for a broad range of aliphatic and aromatic carbonyl compounds and amines. The scope of the reaction, active catalytic systems, possible limitations of the method and DFT-supported mechanistic considerations are discussed in detail in the manuscript.

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Biriukov, KO; Vinogradov, MM; Afanasyev, OI; Vasilyev, DV; Tsygankov, AA; Godovikova, M; Nelyubina, YV; Loginov, DA; Chusov, D or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

More research is needed about (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Choudhury, P; Behera, PK; Bisoyi, T; Sahu, SK; Sahu, RR; Prusty, SR; Stitgen, A; Scanlon, J; Kar, M; Rout, L or concate me.. Recommanded Product: 105-13-5

Recommanded Product: 105-13-5. Authors Choudhury, P; Behera, PK; Bisoyi, T; Sahu, SK; Sahu, RR; Prusty, SR; Stitgen, A; Scanlon, J; Kar, M; Rout, L in ROYAL SOC CHEMISTRY published article about in [Choudhury, Prabhupada; Behera, Pradyota Kumar; Bisoyi, Tanmayee; Sahu, Santosh Kumar; Sahu, Rashmi Ranjan; Prusty, Smruti Ranjita; Rout, Laxmidhar] Berhampur Univ, Dept Chem, Berhampur 760007, Odisha, India; [Stitgen, Abigail; Scanlon, Joseph] Ripon Coll, Dept Chem, Wisconsin Rapids, WI 54971 USA; [Sahu, Rashmi Ranjan; Kar, Manoranjan] IIT Patna, Dept Phys, Patna, Bihar, India; [Rout, Laxmidhar] Indian Inst Sci Educ & Res, Sch Chem Sci, Berhampur 760007, Odisha, India in 2021, Cited 25. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Herein, we report a new protocol for the dehydrogenative oxidation of aryl methanols using the cheap and commercially available catalyst CuSeO3 center dot 2H(2)O. Oxygen-bridged [Cu-O-Se] bimetallic catalysts are not only less expensive than other catalysts used for the dehydrogenative oxidation of aryl alcohols, but they are also effective under mild conditions and at low concentrations. The title reaction proceeds with a variety of aromatic and heteroaromatic methanol examples, obtaining the corresponding carbonyls in high yields. This is the first example using an oxygen-bridged copper-based bimetallic catalyst [Cu-O-Se] for dehydrogenative benzylic oxidation. Computational DFT studies reveal simultaneous H-transfer and Cu-O bond breaking, with a transition-state barrier height of 29.3 kcal mol(-1).

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Choudhury, P; Behera, PK; Bisoyi, T; Sahu, SK; Sahu, RR; Prusty, SR; Stitgen, A; Scanlon, J; Kar, M; Rout, L or concate me.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts