New downstream synthetic route of (2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol

At the same time, in my other blogs, there are other synthetic methods of this type of compound,106-28-5, (2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 106-28-5, (2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, name: (2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol, blongs to alcohols-buliding-blocks compound. name: (2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol

Example 11. Synthesis of Acetic acid 3,7,11-trimethyl-dodeca-2,6,10-trienyl ester, or Farnesyl acetate To a solution of farnesol (100g, 0.45 mol), potassium carbonate (90 g, 0.65 mol) and 4-dimethylamino pyridine (0.5 g) in EtOAc (300 ml) at 0C, acetic anhydride (66.5 g, 0.65 mol) was added dropwise. The reaction was finished in 2 hrs. All the contents of the reaction flask were transferred to a conical flask containing EtOAc (600 ml) and treated with the dropwise addition of a saturated NaHCO3 solution. After neutralization, the organic layer was separated and washed with water (2 x 80 ml), brine (80 ml), and dried over MgSO4 and then removed under vacuum to yield the farnesyl acetate (108 g, 92%). 1H NMR(400 MHz, CDCl3): 5.34 (t, 1H, J = 6.04 Hz), 5.07 (m, 2H), 4.57 (d, 2H, J = 6.84 Hz), 2.10-2.05 (m, 11H), 1.97-1.95 (m, 2H), 1.68-1.66 (m, 6H), 1.58 (s, 6H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,106-28-5, (2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-ol, and friends who are interested can also refer to it.

Reference:
Patent; Mehta, Dilip; Eburon Organic International; Mohan, Priya; Shastri, Mayank; Reid, Ted; EP2868658; (2015); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts