Adding a certain compound to certain chemical reactions, such as: 4254-29-9, 2,3-Dihydro-1H-inden-2-ol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, name: 2,3-Dihydro-1H-inden-2-ol, blongs to alcohols-buliding-blocks compound. name: 2,3-Dihydro-1H-inden-2-ol
General procedure: To a dry 25 mL, bottomed flask equipped with a Dean-Stark trap containing a plug of 4A molecular sieves (pellets) and topped with a reflux condenser was added of Fe(acac)3 ( 36 mg, 0.10 mmol, 5 mol%) and a solution of methyl bezoate (272 mg, 256 .L, 2.0 mmol), benzyl alcohol (216 mg, 208 .L, 2.0 mmol) and triphenyl methane (488 mg, 2 mmol, as internal standard) in heptane (20 mL). The mixture was heated to reflux (105 C) for an indicated time periods. After completion of the reaction as monitored by TLC, 1H NMR and GC, the reaction mixture was cooled to room temperature and the solvent was evaporated. The crude product was purified by column chromatography on silica gel to afforded benzyl benzoate 403 mg, 95% yield. The product obtained was characterized by 1H, 13C NMR, ESI-MS or GC-MS spectroscopic methods. The conversions of the products determined by GC are based on triphenyl methane as an internal standard and are response-corrected based on authentic samples.
The synthetic route of 4254-29-9 has been constantly updated, and we look forward to future research findings.
Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts