New downstream synthetic route of 2,2,4-Trimethyl-1,3-pentanediol

According to the analysis of related databases, 144-19-4, the application of this compound in the production field has become more and more popular.

Reference of 144-19-4, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 144-19-4, name is 2,2,4-Trimethyl-1,3-pentanediol. This compound has unique chemical properties. The synthetic route is as follows.

General procedure: EXAMPLE 7-1 Oxidation of 2,2-Dimethyl-5-phenylpentane-1,3-diol A sodium chlorite aqueous solution (81.0 mg, 0.717 mmol in H2O (0.4 ml)), and a sodium hypochlorite aqueous solution (0.0146 M, 0.16 ml) were separately and slowly dropped onto an acetonitrile (1.2 ml)-pH 6.8 phosphate buffer (1 M, 0.8 ml) of 2,2-dimethyl-5-phenylpentane-1,3-diol (49.7 mg, 0.239 mmol) and DMN-AZADO (3.97 mg, 0.024 mmol) at room temperature. The mixture was stirred at 25 C. for 1 h, and a pH 2.3 phosphate buffer was added until the mixture was brought to pH 4 or less. The aqueous layer was then saturated with a common salt, and extracted with dichloromethane. The organic layer was dried over sodium sulfate, and the solvent was evaporated under reduced pressure. The resulting residue was dissolved in a diethyl ether solution, and treated with an excess amount of a diazomethane diethyl ether solution to produce a methyl ester product. After evaporating the solvent under reduced pressure, the product was purified by silica gel column chromatography to give a hydroxy ester compound (51.0 mg, 90%)

According to the analysis of related databases, 144-19-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; TOHOKU UNIVERSITY; Iwabuchi, Yoshiharu; Shibuya, Masatoshi; Doi, Ryusuke; US9114390; (2015); B2;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts