Awesome Chemistry Experiments For 3-Aminopropan-1-ol

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 156-87-6. Product Details of 156-87-6.

Chemistry is the experimental science by definition. We want to make observations to prove hypothesis. For this purpose, we perform experiments in the lab. , Product Details of 156-87-6, 156-87-6, Name is 3-Aminopropan-1-ol, molecular formula is C3H9NO, belongs to alcohols-buliding-blocks compound. In a document, author is Qiu, Shuang, introduce the new discover.

Effects of algae subtype and extraction condition on extracted fucoxanthin antioxidant property: A 20-year meta-analysis

Algal fucoxanthin as a carotenoid pigment possesses various health benefits, among which, the antioxidant property is one of the most explored. Current research indicated that algal fucoxanthin is generally extracted from different subtypes (microand macro-algae) under varying extraction conditions. However, it lacks information whether algae subtypes and extraction conditions present a remarkable impact on the antioxidant property of the extracted fucoxanthin. In this study, the effects of algae subtype and extraction condition (i.e., extraction solvents, temperature, time, pressure and illumination condition) on fucoxanthin antioxidant property were investigated by performing a meta-analysis. The subtotal standard mean difference (SMD) of the microalgae and macroalgae subtypes were 12.59 (95% confidence interval (CI): 3.63-21.56) and 7.20 (3.44-10.96), respectively, presenting an overlapping range. This suggested that no statistically significant differences existed in the fucoxanthin antioxidant property extracted from two subtypes, which was consistent with the results from the subgroup analysis and meta-regression. Similar observations were found for algal fucoxanthin extracted by alcohols (SMD (CI):7.18 (3.36-11.00)) or alkanes (SMD (CI):11.88 (3.62-20.15)). Moreover, the employed extraction conditions including extraction time (SMD (CI) for >= 60 min vs <60 min: 8.03 (3.55-12.50) and 7.97 (2.49-13.45)), pressure (SMD (CI) for normal vs pressurized: 7.68 (4.00-11.35) and 10.64 (0.21-21.03)), and illumination (SMD (CI) for dark vs normal: 6.91 (2.31-11.50) and 9.45 (4.17-14.73)) showed no statistical influence on fucoxanthin antioxidant property. However, extraction at higher temperature produced stronger fucoxanthin antioxidant property (SMD (CI) for room temperature vs >= 40 degrees C: 31.43 (12.27-50.59) and 7.21 (3.69-10.74)). Additionally, the fucoxanthin antioxidant property exhibited a positive concentration-dependent correlation according to meta-regression analysis. Our findings provide suggestions for fucoxanthin extraction from algae under various conditions and give insights to its application as an antioxidant. As more data become available in the future, data analysis could be updated for more robust comparisons.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 156-87-6. Product Details of 156-87-6.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts