Discovery of 2-(4-Methoxyphenyl)ethanol

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 702-23-8, in my other articles. Name: 2-(4-Methoxyphenyl)ethanol.

Chemistry is an experimental science, Name: 2-(4-Methoxyphenyl)ethanol, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 702-23-8, Name is 2-(4-Methoxyphenyl)ethanol, molecular formula is C9H12O2, belongs to alcohols-buliding-blocks compound. In a document, author is Vignoni, Alejandro.

Alkylation of a hydrophilic photosensitizer enhances the contact-dependent photo-induced oxidation of phospholipid membranes

Lipophilic photosensitizers able to photo-induce lipid oxidation in biomembranes are, in general, much more efficient than hydrophilic ones; acting through the formation of singlet oxygen (O-1(2)), which oxidizes the fatty acid double bonds (type II mechanism). Here we investigate the binding and photosensitizing properties of 4-(decyloxy)pteridin-2-amine (O-decyl-Ptr) using unilamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), a phospholipid with monounsaturated fatty acids. By means of molecular dynamic (MD) simulations, we showed that O-decyl-Ptr binds to the membrane in a localization that favors the direct reaction of the triplet excited state of O-decyl-Ptr with DOPC double bonds. As a consequence, although O-1(2) is formed, O-decyl-Ptr acts mainly as a contact-dependent photosensitizer, meaning through radical formation (type I mechanism). Mass spectrometry analysis of vesicles irradiated in the presence of O-decyl-Ptr, demonstrated the generation of alcohols (LOH), ketones (LO) and hydroperoxides (LOOH). In agreement with the mechanistic hypothesis proposed, LOH and LO (type I photooxidation products) are formed faster than LOOH (type II photooxidation product). Interestingly, no short-chain oxidized products were detected. Accordingly, membrane fluctuations and formation of filaments and buds are observed during in-situ photo-activation of O-decyl-Ptr in giant unilamellar vesicles due to changes in membrane spontaneous curvature. Finally, we evaluated the effect of the photochemical processes studied at a cellular level and demonstrated in experiments of viability of mammalian cells that O-decyl-Ptr has important photodynamic properties. Similar experiments performed using the hydrophilic photosenstizer pterin (Ptr) show that alkylation leads to a striking increase in the efficiency of photosensitized lipid oxidation.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 702-23-8, in my other articles. Name: 2-(4-Methoxyphenyl)ethanol.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts