Analyzing the synthesis route of 637031-88-0

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 637031-88-0, 3,3-Difluorocyclobutanol.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 637031-88-0, name is 3,3-Difluorocyclobutanol. A new synthetic method of this compound is introduced below., COA of Formula: C4H6F2O

: A solution of 4′-bromo-6′- fluoro-r-(trifluoromethyl)spiro[l,3-dioxolane-2,7′-5,6-dihydrocyclopenta[c]pyridine] (0809) (96.2mg, 0.2800mmol) and 2-(di-t-butylphosphino)-3,6-dimethoxy-2′,4′,6′-tri-i-propyl-l,r- biphenyl (3.4 mg, 0.007 mmol) in l,4-dioxane (5.0 mL) was sparged with nitrogen for 3 mins. The reaction mixture was then treated sequentially with potassium hydroxide (47.3 mg, 0.84 mmol), water (101 pL, 5.62 mmol) and [2-(2-aminophenyl)phenyl]-methylsulfonyloxy- palladium; di-t-butyl-[3,6-dimethoxy-2-(2,4,6-triisopropylphenyl)phenyl]phosphane (6.0 mg, 0.007 mmol) under continuous nitrogen stream. The vessel was sealed and heated to 80 C for 1 h and 30 min. The reaction mixture was quenched by the addition of acetic acid (64.3 pL, 1.13 mmol). The reaction mixture was poured into 75 mL of water and extracted with 4 x 20 mL EtOAc. The combined organics were dried with MgS04, filtered, and concentrated to dryness. The product was used without further purification (87 mg). During the reaction, some of the hydrodefluorinated product formed as an impurity. Data for 6-fluoro-l- (trifluoromethyl)-5,6-dihydrospiro[cyclopenta[c]pyridine-7,2′-[l,3]dioxolan]-4-ol: LCMS ESI (+) (M+H) m/z 280. Data for l-(trifluoromethyl)-5,6- dihydrospiro[cyclopenta[c]pyridine-7,2′-[l,3]dioxolan]-4-ol: LCMS ESI (+) (M+H) m/z 262.A solution of impure 6′-fluoro-r-(trifluoromethyl)spiro[l,3-dioxolane-2,7′- 5,6-dihydrocyclopenta[c]pyridine]-4′-ol (44.0 mg, 0.16 mmol), polymer supported (0812) triphenylphosphine (-2.06 mmol/g, 306.2 mg, 0.63 mmol), and 3,3-difluoro-cyclobutanol (68.1 mg, 0.63 mmol) in tetrahydrofuran (3.2 mL) was treated with diisopropyl (0813) azodicarboxylate (120 pL, 0.61 mmol) and stirred at 60 C for 2 h. The reaction mixture was filtered and the filter cake rinsed with 20 mL EtOAc. The filtrate was concentrated and purified by chromatography on silica using 10-30% EtO Ac/hexane to afford a clear solid (39.0 mg, 67%) that was a 2: 1 mixture of the fluorinated and hydrodefluorinated products. LCMS ESI (+) (M+H) m/z 370. Data for 4-(3,3-difluorocyclobutoxy)-6-fluoro-l- (trifluoromethyl)-5,6-dihydrospiro[cyclopenta[c]pyridine-7,2′-[l,3]dioxolane]: LCMS ESI (+) (M+H) m/z 370. Data for 4-(3,3-difluorocyclobutoxy)-l-(trifluoromethyl)-5,6- dihydrospiro[cyclopenta[c]pyridine-7,2′-[l,3]dioxolane]: LCMS ESI (+) (M+H) m/z 352.A solution of impure 4′-(3,3-difluorocyclobutoxy)-6′-fluoro-r-(trifluoromethyl)spiro[l,3- dioxolane-2,7′-5,6-dihydrocyclopenta[c]pyridine] (39.0 mg, 0.106 mmol) in dichloromethane (2.0 mL) at 0 C was treated with perchloric acid (70% in water, 200 pL) and stirred at 0 C for 3 h. The reaction mixture was quenched by the addition of 5 mL of saturated aqueous (0817) NaHC03. The resulting mixture was extracted with 3 x 15 mL CH2Cl2. The combined organics were rinsed with 10 mL of brine, dried with MgS04, filtered, and concentrated to dryness. The product was used without further purification as a 2: 1 mixture of fluorinated and hydrodefluorinated ketones. LCMS ESI (+) (M+H) m/z 326. Data for 4-(3,3- difluorocyclobutoxy)-6-fluoro-l-(trifluoromethyl)-5,6-dihydro-7iT-cyclopenta[c]pyridin-7- one: LCMS ESI (+) (M+H) m/z 326. Data for 4-(3,3-difluorocyclobutoxy)-l- (trifluoromethyl)-5,6-dihydro-7i7-cyclopenta[c]pyridin-7-one: LCMS ESI (+) (M+H) m/z 308.A solution of impure 4-(3,3-difluorocyclobutoxy)-6-fluoro-l- (trifluoromethyl)-5,6-dihydrocyclopenta[c]pyridin-7-one (33.8 mg, 0.10 mmol) in dichloromethane (4.0 mL) was cooled to 0 C and sparged with nitrogen for 5 min. During this time formic acid (11.8 pL, 0.31 mmol) and triethylamine (28.8 pL, 0.21 mmol) were sequentially added. Once sparging was complete, RuCl(p-cymene)[(R,R)-Ts-DPEN] (1.3 mg, 0.002 mmol) was added under a continuous stream of nitrogen. The reaction vessel was sealed and placed into the refrigerator to react overnight. Volatiles were removed by concentration under reduced pressure. The residue was purified by chromatography on silica using 4-18% EtOAc/CH2Cl2 to afford ( 6R, 7L’)-4-(3 , 3 -difl uorocy d obutoxy )-6-fl uoro- 1 – (trifluoromethyl)-6,7-dihydro-5iT-cyclopenta[c]pyridin-7-ol (Compound 465) as a clear solid (5.4 mg, 16%) and (f?)-4-(3,3-difluorocyclobutoxy)-l-(trifluoromethyl)-6,7-dihydro-5i7- cyclopenta[c]pyridin-7-ol (Compound 466) as a clear solid (7.4 mg, 23%). Data for ( 6R,7S )- 4-(3, 3 -difl uorocycl obutoxy )-6-fluoro- l -(trifluoromethyl)-6,7-dihydro-5//- cyclopenta[c]pyridin-7-ol (Compound 465): Retention time HPLC (14 min) = 3.59 min; LCMS ESI (+) (M+H) m/z 328; 1H NMR (400 MHz, CDCl3): d 8.04 (s, 1H), 5.46-5.26 (m, 2H), 4.89-4.79 (m, 1H), 3.36-3.08 (m, 4H), 2.91-2.74 (m, 2H), 2.60 (dd, 1H). Data for (i?)-4-(3,3-difluorocyclobutoxy)-l-(trifluoromethyl)-6,7-dihydro-5iT-cyclopenta[c]pyridin-7- ol (Compound 466): Retention time HPLC (14 min) = 3.95 min; LCMS ESI (+) (M+H) m/z 310; 1H NMR (400 MHz, CDCI3): d 7.98 (s, 1H), 5.59-5.54 (m, 1H), 4.88-4.79 (m, 1H), 3.24- 3.07 (m, 3H), 2.89 (dd, 1H), 2.89-2.74 (m, 2H), 2.44-2.34 (m,…

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 637031-88-0, 3,3-Difluorocyclobutanol.

Reference:
Patent; PELOTON THERAPEUTICS, INC.; JOSEY, John A.; SHRIMALI, Rajeev; WALLACE, Eli M.; WONG, Tai; (195 pag.)WO2019/191227; (2019); A1;,
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts